Aptamers are recognition elements increasingly used for the development of biosensing strategies, especially in the detection of proteins or small molecule targets. Lysozyme, which is recognized as an important biomarker for various diseases and a major allergenic protein found in egg whites, is one of the main analytical targets of aptamer-based biosensors. However, since aptamer-based strategies can be prone to artifacts and data misinterpretation, rigorous strategies for multifaceted characterization of the aptamer-target interaction are needed. In this work, a multitechnique approach has been devised to get further insights into the binding performance of the anti-lysozyme DNA aptamers commonly used in the literature. To study molecular interactions between lysozyme and different anti-lysozyme DNA aptamers, measurements based on a magneto-electrochemical apta-assay, circular dichroism spectroscopy, fluorescence spectroscopy, and asymmetrical flow field-flow fractionation were performed. The reliability and versatility of the approach were proved by investigating a SELEX-selected RNA aptamer reported in the literature, that acts as a positive control. The results confirmed that an interaction in the low micromolar range is present in the investigated binding buffers, and the binding is not associated with a conformational change of either the protein or the DNA aptamer. The similar behavior of the anti-lysozyme DNA aptamers compared to that of randomized sequences and polythymine, used as negative controls, showed nonsequence-specific interactions. This study demonstrates that severe testing of aptamers resulting from SELEX selection is the unique way to push these biorecognition elements toward reliable and reproducible results in the analytical field.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.3c05883DOI Listing

Publication Analysis

Top Keywords

anti-lysozyme dna
16
dna aptamers
16
aptamers
7
dna
5
aptamers promising
4
promising receptors
4
receptors analytical
4
analytical purposes?
4
purposes? insights
4
anti-lysozyme
4

Similar Publications

Aptamers are recognition elements increasingly used for the development of biosensing strategies, especially in the detection of proteins or small molecule targets. Lysozyme, which is recognized as an important biomarker for various diseases and a major allergenic protein found in egg whites, is one of the main analytical targets of aptamer-based biosensors. However, since aptamer-based strategies can be prone to artifacts and data misinterpretation, rigorous strategies for multifaceted characterization of the aptamer-target interaction are needed.

View Article and Find Full Text PDF

A replacement-type electrochemiluminescent aptasensor for lysozyme based on full-electric modification electrode coupled to silica-coated Ru(bpy)/silver nanospheres.

Anal Bioanal Chem

December 2021

Key Laboratory of the Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.

This research proposed a replacement-type electrochemiluminescent (ECL) aptasensor for lysozyme (LYZ) detection at trace levels based on a full-electric modification electrode (FEMG) coupled to silica-coated Ru(bpy)/silver nanospheres (Ru/SNs@SiO). The multi-walled carbon nanotubes-doped-thionine (MWCNTs/PTn) electropolymerized modified electrode was decorated with electrodeposited gold nanoparticles (GNs) to form the FEMG. Then, the FEMG was utilized as sensing substrates for the immobilization of the anti-lysozyme aptamer (LA); the stability and number of LA attaching onto the FEMG were dramatically increased.

View Article and Find Full Text PDF

In terms of how the signal varies in response to increased concentration of an analyte, sensors can be classified as either "signal-on" or "signal-off" format. While both types hold potentials to be sensitive, selective, and reusable, in many situations "signal-on" sensors are preferred for their low background signal and better selectivity. In this study, with the detection of lysozyme using its DNA aptamer as a trial system, for the first time we demonstrated that such an aptamer-based electrochemical biosensor can be converted from intrinsically "signal-off" to "signal-on" with the aid of a DNA exonuclease.

View Article and Find Full Text PDF

Nanotetrahedron-assisted electrochemical aptasensor with cooperatively-folding aptamer chimera for sensitive and selective detection of lysozyme in red wines.

Anal Chim Acta

January 2020

College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.

Although aptamers show great potential in the field of analytical chemistry, their intrinsic shortcomings of relatively weak affinity and selectivity in complex working environment limit their applicability to real analysis, because the flexibility of aptamers makes the specific aptatopes (i.e., binding sites for targets) in the conformational structure unstable and deficient.

View Article and Find Full Text PDF

Engineering Aptamer with Enhanced Affinity by Triple Helix-Based Terminal Fixation.

J Am Chem Soc

November 2019

Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/BioSensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province , Hunan University, Changsha , Hunan 410082 , China.

The affinity of aptamers relies on their adaptive folding, but the excessive flexibility of the aptamer backbone usually hampers the folding process. Thus, there is an urgent need to engineer aptamers with more stable and defined structures. Herein, we report a postselection strategy for stabilizing aptamer structures, by fixing both termini of the aptamer with a length-optimized triple helix structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!