Indium phosphide (InP) quantum dots (QDs) have recently garnered considerable interest in the design of bioprobes due to their non-toxic nature and excellent optical properties. Several attempts for the conjunction of InP QDs with various entities such as organic dyes and dye-labeled proteins have been reported, while that with fluorescent proteins remains largely uncharted. This study reports the development of a Förster resonance energy transfer pair comprising glutathione-capped InP/GaP/ZnS QDs [InP(G)] and the fluorescent protein mCherry. Glutathione on InP(G) undergoes effective bioconjugation with mCherry consisting of a hexahistidine tag, and the nonradiative energy transfer is investigated using steady-state and time-resolved measurements. Selective one-photon excitation of InP(G) in the presence of mCherry shows a decay of the emission of the QDs and a concomitant growth of acceptor emission. Time-resolved investigations prove the nonradiative transfer of energy between InP(G) and mCherry. Furthermore, the scope of two-photon-induced energy transfer between InP(G) and mCherry is investigated by exciting the donor in the optical transparency range. The two-photon absorption is confirmed by the quadratic relationship between the emission intensity and the excitation power. In general, near-infrared excitation provides a path for effective light penetration into the tissues and reduces the photodamage of the sample. The two-photon-induced energy transfer in such assemblies could set the stage for a wide range of biological and optoelectronic applications in the foreseeable future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0186483 | DOI Listing |
Environ Sci Technol
January 2025
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
Pyrogenic carbons (PCs), with varying structures depending on the materials and thermal treatment conditions, have been extensively used to enhance anaerobic digestion by mediating electron transfer. However, the underlying mechanism has yet to be explored. Herein, the redirection and enhancement of the direct interspecies electron transfer (DIET) pathway were evidenced, along with the upregulated electrochemical properties and structural proteins in the methanogenic consortia.
View Article and Find Full Text PDFNat Mater
January 2025
Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA.
Spin waves, or magnons, are essential for next-generation energy-efficient spintronics and magnonics. Yet, visualizing spin-wave dynamics at nanoscale and microwave frequencies remains a formidable challenge due to the lack of spin-sensitive, time-resolved microscopy. Here we report a breakthrough in imaging dipole-exchange spin waves in a ferromagnetic film owing to the development of laser-free ultrafast Lorentz electron microscopy, which is equipped with a microwave-mediated electron pulser for high spatiotemporal resolution.
View Article and Find Full Text PDFPhotosynth Res
January 2025
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, Russia, 119991.
The femtosecond dynamics of energy transfer from light-excited spirilloxanthin (Spx) to bacteriochlorophyll (BChl) a in the reaction centers (RCs) of purple photosynthetic bacteria Rhodospirillum rubrum was studied. According to crio-electron microscopy data, Spx is located near accessory BChl a in the B-branch of cofactors. Spx was excited by 25 fs laser pulses at 490 nm, and difference absorption spectra were recorded in the range 500-700 nm.
View Article and Find Full Text PDFSci Rep
January 2025
School of Technology, Beijing Forestry University, Beijing, 100083, China.
The magnetically suspended flywheel energy storage system (MS-FESS) is an energy storage equipment that accomplishes the bidirectional transfer between electric energy and kinetic energy, and it is widely used as the power conversion unit in the uninterrupted power supply (UPS) system. First, the structure of the FESS-UPS system is introduced, and the working principles at different working states are described. Furthermore, the control strategy of the FESS-UPS is developed, and the switch oscillation of the FESS-UPS system between the charging and discharging states is analyzed.
View Article and Find Full Text PDFSci Rep
January 2025
Instituto de Ingeniería Energética, Universitat Politècnica de València, Valencia, Spain.
Reliable prediction of photovoltaic power generation is key to the efficient management of energy systems in response to the inherent uncertainty of renewable energy sources. Despite advances in weather forecasting, photovoltaic power prediction accuracy remains a challenge. This study presents a novel approach that combines genetic algorithms and dynamic neural network structure refinement to optimize photovoltaic prediction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!