Background: Francisella tularensis, the causative agent of tularemia, is endemic throughout the Northern Hemisphere and requires as few as 10 organisms to cause disease, making this potential bioterrorism agent one of the most infectious bacterial pathogens known. Aminoglycosides, tetracyclines, and, more recently, fluoroquinolones are used for treatment of tularemia; however, data on the relative effectiveness of these and other antimicrobial classes are limited.
Methods: Nine databases, including Medline, Global Health, and Embase, were systematically searched for articles containing terms related to tularemia. Articles with case-level data on tularemia diagnosis, antimicrobial treatment, and patient outcome were included. Patient demographics, clinical findings, antimicrobial administration, and outcome (eg, intubation, fatality) were abstracted using a standardized form.
Results: Of the 8878 publications identified and screened, 410 articles describing 870 cases from 1993 to 2023 met inclusion criteria. Cases were reported from 35 countries; more than half were from the United States, Turkey, or Spain. The most common clinical forms were ulceroglandular, oropharyngeal, glandular, and pneumonic disease. Among patients treated with aminoglycosides (n = 452 [52%]), fluoroquinolones (n = 339 [39%]), or tetracyclines (n = 419 [48%]), the fatality rate was 0.7%, 0.9%, and 1.2%, respectively. Patients with pneumonic disease who received ciprofloxacin had no fatalities and the lowest rates of thoracentesis/pleural effusion drainage and intubation compared to those who received aminoglycosides and tetracyclines.
Conclusions: Aminoglycosides, fluoroquinolones, and tetracyclines are effective antimicrobials for treatment of tularemia, regardless of clinical manifestation. For pneumonic disease specifically, ciprofloxacin may have slight advantages compared to other antimicrobials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/cid/ciad736 | DOI Listing |
Lung
January 2025
Department of Internal Medicine, National Taiwan University Hospital, No.7, Chung Shan S. Rd., Zhongzheng District, Taipei City, 100225, Taiwan.
Purpose: Electronic noses (eNose) and gas chromatography mass spectrometry (GC-MS) are two important breath analysis approaches for differentiating between respiratory diseases. We evaluated the performance of a novel electronic nose for different respiratory diseases, and exhaled breath samples from patients were analyzed by GC-MS.
Materials And Methods: Patients with lung cancer, pneumonia, structural lung diseases, and healthy controls were recruited (May 2019-July 2022).
J Vet Sci
November 2024
Departamento de Fisiología y Farmacología Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, México.
Importance: Enrofloxacin preparations are available for administration daily or every 3 days. This study presents clinical evidence to define which preparation is adequate to treat clinical cases of bovine respiratory disease (BRD) in calves.
Objective: To correlate the pharmacokinetics/pharmacodynamics (PK/PD) ratios of three pharmaceutical preparations of enrofloxacin with their clinical efficacy in treating BRD.
Open Vet J
November 2024
Department of Internal and Preventive Veterinary Medicine, College of Veterinary Medicine, University of Wasit, Wasit, Iraq.
Background: In goats, acute and chronic respiratory infections are often characterized by a rapidly progressing clinical course with little opportunity to develop an effective antibiotic therapy.
Aim: This study aimed to identify spp. in pneumonic goats, assess its antibiotic susceptibility, and confirm the molecular phylogenetics of spp.
Appl Biosaf
December 2024
Department of Microbiology and Immunology; University of Louisville School of Medicine, Louisville, Kentucky, USA.
Introduction: is the gram-negative, facultative intracellular bacterium that causes the disease known as plague. Due to the risk for aerosol transmission, a low infectious dose, and the acute and lethal nature of pneumonic plague, research activities with require Biosafety Level 3 (BSL-3) facilities to provide the appropriate safeguards to minimize accidental exposures and environmental release. However, many experimental assays cannot be performed in BSL-3 due to equipment availability, and thus require removal of samples from the BSL-3 laboratory to be completed.
View Article and Find Full Text PDFMath Biosci Eng
October 2024
Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong SAR, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!