The partial oxidation of methane to methanol catalyzed by Cu-exchanged zeolites involves at present a three-step procedure that requires changing reaction conditions along the catalytic cycle. In this work we present an alternative catalytic cycle for selective methane conversion to methanol using as active species small Cu clusters supported on CHA zeolite. Periodic DFT calculations show that molecular O is easily activated on Cu clusters producing bi-coordinated O atoms able to dissociate homolytically a CH bond from CH and to react with the radical-like non-adsorbed methyl intermediate formed producing methanol, while competitive overoxidation to CO is energetically disfavored. The present mechanistic study opens a new avenue to design catalytic materials based on their ability to stabilize radical species.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp05802fDOI Listing

Publication Analysis

Top Keywords

catalytic cycle
12
alternative catalytic
8
cycle selective
8
selective methane
8
methane oxidation
4
methanol
4
oxidation methanol
4
methanol clusters
4
clusters zeolites
4
zeolites partial
4

Similar Publications

A catalytic system has been developed, utilizing metal nanoparticles confined within a chitosan‑carbon black composite hydrogel (M-CH/CB), aimed at improving ease of use and recovery in catalytic processes. The M-CH/CBs were characterized by XRD, SEM, and EDX, the M-CH/CB system demonstrated exceptional catalytic activity in producing hydrogen gas (H) from water and methanol, and in reducing several hazardous materials including 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), 2,6-dinitrophenol (2,6-DNP), acridine orange (ArO), methyl orange (MO), congo red (CR), methylene blue (MB), and potassium ferricyanide (PFC). Among the tested nanocatalysts, CH/CB showed the highest efficiency for H₂ production, while Fe-CH/CB excelled in contaminant reduction (7.

View Article and Find Full Text PDF

Exploiting unique NP1 interface: Oriented immobilization via electrostatic and affinity interactions in a tailored PDA/PEI microenvironment enhanced by concanavalin A.

Talanta

January 2025

College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, China. Electronic address:

Enzyme immobilization techniques are crucial for enhancing enzyme stability and catalytic efficiency. Traditional methods such as physical adsorption and simple covalent binding often fail to maintain enzyme activity and stability. In this study, an innovative multi-level immobilization strategy was proposed to achieve efficient targeted immobilization of nuclease P1 (NP1) by fine-tuning the surface microenvironment.

View Article and Find Full Text PDF

Urinary metabolic alterations associated with occupational exposure to metals and polycyclic aromatic hydrocarbons based on non-target metabolomics.

J Hazard Mater

January 2025

Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:

Long-term occupational exposure to metals and organics have been reported to be under great health risks. However, limited data are available on the molecular mechanism between combined exposure to metals and polycyclic aromatic hydrocarbons (PAHs) and harmful health effects. In present work, non-target metabolomics study was conducted based on urine samples from nonferrous metal smelting workers (n = 207), surrounding residents (n = 180), and the control residents (n = 187) by using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS).

View Article and Find Full Text PDF

Chemodynamic therapy (CDT) has garnered significant attention in the field of tumor therapy due to its ability to convert overexpressed hydrogen peroxide (HO) in tumors into highly toxic hydroxyl radicals (•OH) through metal ion-mediated catalysis. However, the effectiveness of CDT is hindered by low catalyst efficiency, insufficient intra-tumor HO level, and excessive glutathione (GSH). In this study, a pH/GSH dual responsive bimetallic nanocatalytic system (CuFeMOF@GOx@Mem) is developed by modifying red blood cell membranes onto glucose oxidase (GOx)-loaded Fe-Cu bimetallic MOFs, enhancing the efficacy of CDT through a triple-enhanced way by HO self-supply, catalysts self-cycling, and GSH self-elimination.

View Article and Find Full Text PDF

Harsh operating conditions imposed by vehicular applications significantly limit the utilization of proton exchange membrane fuel cells (PEMFCs) in electric propulsion systems. Improper/poor management and supervision of rapidly varying current demands can lead to undesired electrochemical reactions and critical cell failures. Among other failures, flooding and catalytic degradation are failure mechanisms that directly impact the composition of the membrane electrode assembly and can cause irreversible cell performance deterioration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!