Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Morphological studies typically avoid using osteological samples that derive from captive animals because it is assumed that their morphology is not representative of wild populations. Rearing environments indeed differ between wild and captive individuals. For example, mechanical properties of the diets provided to captive animals can be drastically different from the food present in their natural habitats, which could impact cranial morphology and dental health. Here, we examine morphological differences in the maxillae of wild versus captive chimpanzees (Pan troglodytes) given the prominence of this species in comparative samples used in human evolution research and the key role of the maxilla in such studies. Size and shape were analysed using three-dimensional geometric morphometric methods based on computed tomography scans of 94 wild and 30 captive specimens. Captive individuals have on average larger and more asymmetrical maxillae than wild chimpanzees, and significant differences are present in their maxillary shapes. A large proportion of these shape differences are attributable to static allometry, but wild and captive specimens still differ significantly from each other after allometric size adjustment of the shape data. Levels of shape variation are higher in the captive group, while the degree of size variation is likely similar in our two samples. Results are discussed in the context of ontogenetic growth trajectories, changes in dietary texture, an altered social environment, and generational differences. Additionally, sample simulations show that size and shape differences between chimpanzees and bonobos (Pan paniscus) are exaggerated when part of the wild sample is replaced with captive chimpanzees. Overall, this study confirms that maxillae of captive chimpanzees should not be included in morphological or taxonomic analyses when the objective is to characterise the species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11095307 | PMC |
http://dx.doi.org/10.1111/joa.14016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!