This review intends to bridge the gap between our knowledge of steroid hormone regulation of motile cilia and the potential involvement of the primary cilium focusing on the female reproductive tract functions. The review emphasizes hormonal regulation of the motile and primary cilia in the oviduct and uterus. Steroid hormones including estrogen, progesterone, and testosterone act through their cognate receptors to regulate the development and biological function of the reproductive tracts. These hormones modulate motile ciliary beating and, in some cases, primary cilia function. Dysfunction of motile or primary cilia due to genetic anomalies, hormone imbalances, or loss of steroid hormone receptors impairs mammalian fertility. However, further research on hormone modulation of ciliary function, especially in the primary cilium, and its signaling cascades will provide insights into the pathogenesis of mammalian infertility and the development of contraceptives or infertility treatments targeting primary and/or motile cilia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10824531 | PMC |
http://dx.doi.org/10.1016/j.coemr.2024.100503 | DOI Listing |
Extracell Vesicle
December 2024
The Jared Grantham Kidney Institute at the University of Kansas Medical Center, Department of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, KS 66160, USA.
Autosomal dominant polycystic kidney (ADPKD) disease is the commonest genetic cause of kidney failure (affecting 1:800 individuals) and is due to heterozygous germline mutations in either of two genes, and . Homozygous germline mutations in are responsible for autosomal recessive polycystic kidney (ARPKD) disease a rare (1:20,000) but severe neonatal disease. The products of these three genes, (polycystin-1 (PC1 4302(3)aa)), (polycystin-2 (PC2 968aa)) and (fibrocystin (4074aa)) are all present on extracellular vesicles (EVs) termed, PKD-exosome-like vesicles (PKD-ELVs).
View Article and Find Full Text PDFVet Res
January 2025
Animal Health Unit, Department of Veterinary Science, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan.
Mycoplasma pneumonia, caused by Mycoplasma bovis (Mycoplasmopsis bovis; M. bovis), is linked with severe inflammatory reactions in the lungs and can be challenging to treat with antibiotics. Biofilms play a significant role in bacterial persistence and contribute to the development of chronic lesions.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacology and Experimental Therapeutics; MS 1015, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Health Education Building; Room 282E, 3000 Arlington Ave, Toledo, OH, 43614, USA.
We previously demonstrated that the inability of primary endothelial cilia to sense fluid shear stress can lead to nitric oxide (NO) deficiency and cause hypertension (HTN). Decreased biosynthesis of NO contributes to cerebral amyloid angiopathy in Alzheimer's disease (AD) patients through increased deposition of amyloid beta (Aβ). However, the molecular mechanisms underlying the pathogenesis of HTN and AD are incompletely understood.
View Article and Find Full Text PDFJ Allergy Clin Immunol
January 2025
Division of Rhinology, Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine; Monell Chemical Senses Center, Philadelphia; PA; Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, PA. Electronic address:
Gene
January 2025
Department of Cardiology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China. Electronic address:
Backgroud: The ALMS1 gene is predominantly localized to cilia, particularly in the photoreceptor cells of the retina, auditory neurons, kidneys, and other ciliated structures. Pathogenic mutations in this gene cause Alstrom syndrome (AS), which is characterized by dilated cardiomyopathy, retinal degeneration, neurodeafness, and centripetal obesity. However, the genetic mechanism of the ALMS1 gene remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!