A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automatic tooth periodontal ligament segmentation of cone beam computed tomography based on instance segmentation network. | LitMetric

Objective: The three-dimensional morphological structures of periodontal ligaments (PDLs) are important data for periodontal, orthodontic, prosthodontic, and implant interventions. This study aimed to employ a deep learning (DL) algorithm to segment the PDL automatically in cone-beam computed tomography (CBCT).

Method: This was a retrospective study. We randomly selected 389 patients and 1734 axial CBCT images from the CBCT database, and designed a fully automatic PDL segmentation computer-aided model based on instance segmentation Mask R-CNN network. The labels of the model training were 'teeth' and 'alveolar bone', and the 'PDL' is defined as the region where the 'teeth' and 'alveolar bone' overlap. The model's segmentation performance was evaluated using CBCT data from eight patients outside the database.

Results: Qualitative evaluation indicates that the PDL segmentation accuracy of incisors, canines, premolars, wisdom teeth, and implants reached 100%. The segmentation accuracy of molars was 96.4%. Quantitative evaluation indicates that the mIoU and mDSC of PDL segmentation were 0.667 ± 0.015 (>0.6) and 0.799 ± 0.015 (>0.7) respectively.

Conclusion: This study analysed a unique approach to AI-driven automatic segmentation of PDLs on CBCT imaging, possibly enabling chair-side measurements of PDLs to facilitate periodontists, orthodontists, prosthodontists, and implantologists in more efficient and accurate diagnosis and treatment planning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10827460PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e24097DOI Listing

Publication Analysis

Top Keywords

pdl segmentation
12
segmentation
9
computed tomography
8
based instance
8
instance segmentation
8
'teeth' 'alveolar
8
'alveolar bone'
8
evaluation indicates
8
segmentation accuracy
8
automatic tooth
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!