AI Article Synopsis

  • The local field potential (LFP) represents low-frequency electrical activity reflecting nearby neural currents, primarily due to synaptic inputs, and complements neural firing spikes but is complex to interpret due to multiple sources.
  • Traditional methods like PCA and ICA aim to decompose LFP data but struggle with the physiologically intertwined processes, leading to inaccurate interpretations.
  • The new Laminar Population Analysis (LPA) algorithm improves upon these methods by utilizing multiunit activity (MUA) alongside LFP data, effectively identifying sources and sinks of neural activity in the visual cortex with greater accuracy through physiological rather than statistical assumptions.

Article Abstract

The local field potential (LFP), the low-frequency part of the extracellular potential, reflects transmembrane currents in the vicinity of the recording electrode. Thought mainly to stem from currents caused by synaptic input, it provides information about neural activity complementary to that of spikes, the output of neurons. However, the many neural sources contributing to the LFP, and likewise the derived current source density (CSD), can often make it challenging to interpret. Efforts to improve its interpretability have included the application of statistical decomposition tools like principal component analysis (PCA) and independent component analysis (ICA) to disentangle the contributions from different neural sources. However, their underlying assumptions of, respectively, orthogonality and statistical independence are not always valid for the various processes or pathways generating LFP. Here, we expand upon and validate a decomposition algorithm named Laminar Population Analysis (LPA), which is based on physiological rather than statistical assumptions. LPA utilizes the multiunit activity (MUA) and LFP jointly to uncover the contributions of different populations to the LFP. To perform the validation of LPA, we used data simulated with the large-scale, biophysically detailed model of mouse V1 developed by the Allen Institute. We find that LPA can identify laminar positions within V1 and the temporal profiles of laminar population firing rates from the MUA. We also find that LPA can estimate the salient current sinks and sources generated by feedforward input from the lateral geniculate nucleus (LGN), recurrent activity in V1, and feedback input from the lateromedial (LM) area of visual cortex. LPA identifies and distinguishes these contributions with a greater accuracy than the alternative statistical decomposition methods, PCA and ICA. Lastly, we also demonstrate the application of LPA on experimentally recorded MUA and LFP from 24 animals in the publicly available Visual Coding dataset. Our results suggest that LPA can be used both as a method to estimate positions of laminar populations and to uncover salient features in LFP/CSD contributions from different populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10827114PMC
http://dx.doi.org/10.1101/2024.01.15.575805DOI Listing

Publication Analysis

Top Keywords

laminar population
12
extracellular potential
8
population analysis
8
neural sources
8
statistical decomposition
8
component analysis
8
lpa
8
mua lfp
8
contributions populations
8
find lpa
8

Similar Publications

Cannabinoid receptor 1 (CB1) regulates synaptic transmission through presynaptic receptors in nerve terminals, and its physiological roles are of clinical relevance. The cellular sources and synaptic targets of CB1-expressing terminals in the human cerebral cortex are undefined. We demonstrate a variable laminar pattern of CB1-immunoreactive axons and electron microscopically show that CB1-positive GABAergic terminals make type-2 synapses innervating dendritic shafts (69%), dendritic spines (20%) and somata (11%) in neocortical layers 2-3.

View Article and Find Full Text PDF

Background And Aim: Osteoid osteoma (Oo) and osteoblastoma (Ob) are rare primary bone tumors with a higher prevalence in the second decade of life. Treatment can be conservative, but in cases of spinal location, resective surgery is of great importance but may be challenging.

Material And Methods: We report four pediatric cases of Oo and Ob managed in our unit, with different locations at the level of the cervical spine.

View Article and Find Full Text PDF

The current study investigated the morphological dietary preferences of an outbreaking population of corallivorous crown-of-thorn sea stars (Acanthaster sp.) in Koh Tao, situated in the Gulf of Thailand. The local effects of such populations deemed to be in outbreak are currently poorly understood.

View Article and Find Full Text PDF

Methylcellulose enhances resolution in gravitational field-flow fractionation: Going beyond viscosity.

J Chromatogr A

January 2025

Department "Area Materno-Infantile" Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan Italy.

Gravitational Field-Flow Fractionation (GrFFF) is an elution-based method designed for the separation of particles ranging from a few micrometers up to approximately 100 μm in diameter. Separation occurs over time, with particles being fractionated based on size and other physico-chemical properties. GrFFF takes advantage of gravitational forces acting perpendicularly to a laminar flow in a thin channel.

View Article and Find Full Text PDF

The local field potential (LFP), the low-frequency part of the extracellular potential, reflects transmembrane currents in the vicinity of the recording electrode. Thought mainly to stem from currents caused by synaptic input, it provides information about neural activity complementary to that of spikes, the output of neurons. However, the many neural sources contributing to the LFP, and likewise the derived current source density (CSD), can often make it challenging to interpret.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!