The behavioral and neural effects of the endogenous release of acetylcholine following stimulation of the Nucleus Basalis of Meynert (NB) have been recently examined (Qi et al. 2021). Counterintuitively, NB stimulation enhanced behavioral performance while broadening neural tuning in the prefrontal cortex (PFC). The mechanism by which a weaker mnemonic neural code could lead to better performance remains unclear. Here, we show that increased neural excitability in a simple continuous bump attractor model can induce broader neural tuning and decrease bump diffusion, provided neural rates are saturated. Increased memory precision in the model overrides memory accuracy, improving overall task performance. Moreover, we show that bump attractor dynamics can account for the nonuniform impact of neuromodulation on distractibility, depending on distractor distance from the target. Finally, we delve into the conditions under which bump attractor tuning and diffusion balance in biologically plausible heterogeneous network models. In these discrete bump attractor networks, we show that reducing spatial correlations or enhancing excitatory transmission can improve memory precision. Altogether, we provide a mechanistic understanding of how cholinergic neuromodulation controls spatial working memory through perturbed attractor dynamics in PFC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10827212 | PMC |
http://dx.doi.org/10.1101/2024.01.17.576071 | DOI Listing |
Cogn Neurodyn
December 2024
Research Centre of Mathematics, University of Minho, Guimarães, Portugal.
Continuous bump attractor networks (CANs) have been widely used in the past to explain the phenomenology of working memory (WM) tasks in which continuous-valued information has to be maintained to guide future behavior. Standard CAN models suffer from two major limitations: the stereotyped shape of the bump attractor does not reflect differences in the representational quality of WM items and the recurrent connections within the network require a biologically unrealistic level of fine tuning. We address both challenges in a two-dimensional (2D) network model formalized by two coupled neural field equations of Amari type.
View Article and Find Full Text PDFPhys Rev E
September 2024
Department of Applied Mathematics, University of Colorado, Boulder, Colorado 80309, USA.
PLoS Comput Biol
August 2024
School of Life Sciences, University of Sussex, Brighton, United Kingdom.
The central complex of insects contains cells, organised as a ring attractor, that encode head direction. The 'bump' of activity in the ring can be updated by idiothetic cues and external sensory information. Plasticity at the synapses between these cells and the ring neurons, that are responsible for bringing sensory information into the central complex, has been proposed to form a mapping between visual cues and the heading estimate which allows for more accurate tracking of the current heading, than if only idiothetic information were used.
View Article and Find Full Text PDFCogn Neurodyn
August 2024
The State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, No.114, Nanta Street Heping District, Shenyang, 110016 Liaoning China.
The hippocampal-entorhinal circuit is considered to play an important role in the spatial cognition of animals. However, the mechanism of the information flow within the circuit and its contribution to the function of the grid-cell module are still topics of discussion. Prevailing theories suggest that grid cells are primarily influenced by self-motion inputs from the Medial Entorhinal Cortex, with place cells serving a secondary role by contributing to the visual calibration of grid cells.
View Article and Find Full Text PDFElife
July 2024
School of Psychological and Cognitive Sciences, IDG/McGovern Institute for Brain Research, Center of Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
Hippocampal place cells in freely moving rodents display both theta phase precession and procession, which is thought to play important roles in cognition, but the neural mechanism for producing theta phase shift remains largely unknown. Here, we show that firing rate adaptation within a continuous attractor neural network causes the neural activity bump to oscillate around the external input, resembling theta sweeps of decoded position during locomotion. These forward and backward sweeps naturally account for theta phase precession and procession of individual neurons, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!