Functional magnetic resonance imaging (fMRI) data are dominated by noise and artifacts, with only a small fraction of the variance relating to neural activity. Temporal independent component analysis (tICA) is a recently developed method that enables selective denoising of fMRI artifacts related to physiology such as respiration. However, an automated and easy to use pipeline for tICA has not previously been available; instead, two manual steps have been necessary: 1) setting the group spatial ICA dimensionality after MELODIC's Incremental Group-PCA (MIGP) and 2) labeling tICA components as artifacts versus signals. Moreover, guidance has been lacking as to how many subjects and timepoints are needed to adequately re-estimate the temporal ICA decomposition and what alternatives are available for smaller groups or even individual subjects. Here, we introduce a nine-step fully automated tICA pipeline which removes global artifacts from fMRI dense timeseries after sICA+FIX cleaning and MSMAll alignment driven by functionally relevant areal features. Additionally, we have developed an automated "reclean" Pipeline for improved spatial ICA (sICA) artifact removal. Two major automated components of the pipeline are 1) an automatic group spatial ICA (sICA) dimensionality selection for MIGP data enabled by fitting multiple Wishart distributions; 2) a hierarchical classifier to distinguish group tICA signal components from artifactual components, equipped with a combination of handcrafted features from domain expert knowledge and latent features obtained via self-supervised learning on spatial maps. We demonstrate that the dimensionality estimated for the MIGP data from HCP Young Adult 3T and 7T datasets is comparable to previous manual tICA estimates, and that the group sICA decomposition is highly reproducible. We also show that the tICA classifier achieved over 0.98 Precision-Recall Area Under Curve (PR-AUC) and that the correctly classified components account for over 95% of the tICA-represented variance on multiple held-out evaluation datasets including the HCP-Young Adult, HCP-Aging and HCP-Development datasets under various settings. Our automated tICA pipeline is now available as part of the HCP pipelines, providing a powerful and user-friendly tool for the neuroimaging community.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10827070PMC
http://dx.doi.org/10.1101/2024.01.15.574667DOI Listing

Publication Analysis

Top Keywords

spatial ica
12
temporal ica
8
tica
8
group spatial
8
automated tica
8
tica pipeline
8
ica sica
8
migp data
8
pipeline
6
ica
5

Similar Publications

Non-Rigid Cycle Consistent Bidirectional Network with Transformer for Unsupervised Deformable Functional Magnetic Resonance Imaging Registration.

Brain Sci

January 2025

Lab of Digital Image and Intelligent Computation, College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China.

Background: In neuroscience research about functional magnetic resonance imaging (fMRI), accurate inter-subject image registration is the basis for effective statistical analysis. Traditional fMRI registration methods are usually based on high-resolution structural MRI with clear anatomical structure features. However, this registration method based on structural information cannot achieve accurate functional consistency between subjects since the functional regions do not necessarily correspond to anatomical structures.

View Article and Find Full Text PDF

Reconfigured metabolism brain network in asymptomatic Creutzfeldt-Jakob disease.

Neurobiol Dis

January 2025

Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China. Electronic address:

Background: Investigating brain metabolic networks is crucial for understanding the pathogenesis and functional alterations in Creutzfeldt-Jakob disease (CJD). However, studies on presymptomatic individuals remain limited. This study aimed to examine metabolic network topology reconfiguration in asymptomatic carriers of the PRNP G114V mutation.

View Article and Find Full Text PDF

Ischemic stroke is responsible for significant morbidity and mortality in the United States and worldwide. Stroke treatment optimization requires emergency medical personnel to make rapid triage decisions concerning destination hospitals that may differ in their ability to provide highly time-sensitive pharmaceutical and surgical interventions. These decisions are particularly crucial in rural areas, where transport decisions can have a large impact on treatment times - often involving a trade-off between delay in pharmaceutical therapy or a delay in endovascular thrombectomy.

View Article and Find Full Text PDF

Over the past two decades, rapid advancements in magnetic resonance technology have significantly enhanced the imaging resolution of functional Magnetic Resonance Imaging (fMRI), far surpassing its initial capabilities. Beyond mapping brain functional architecture at unprecedented scales, high-spatial-resolution acquisitions have also inspired and enabled several novel analytical strategies that can potentially improve the sensitivity and neuronal specificity of fMRI. With small voxels, one can sample from different levels of the vascular hierarchy within the cerebral cortex and resolve the temporal progression of hemodynamic changes from parenchymal to pial vessels.

View Article and Find Full Text PDF

A spatially constrained independent component analysis jointly informed by structural and functional network connectivity.

Netw Neurosci

December 2024

Tri-institute Translational Research in Neuroimaging and Data Science (TReNDS Center), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA.

There are a growing number of neuroimaging studies motivating joint structural and functional brain connectivity. The brain connectivity of different modalities provides an insight into brain functional organization by leveraging complementary information, especially for brain disorders such as schizophrenia. In this paper, we propose a multimodal independent component analysis (ICA) model that utilizes information from both structural and functional brain connectivity guided by spatial maps to estimate intrinsic connectivity networks (ICNs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!