Rationale: We showed that levels of a murine mitochondrial noncoding RNA, , increase in alveolar epithelial type 2 cells exposed to extracts from cigarette smoke. The transcripts translocate to the nucleus, upregulating nucleus-encoded mitochondrial genes and mitochondrial bioenergetics. This response is lost after chronic exposure to smoke in a mouse model of chronic obstructive pulmonary disease.

Objectives: To determine if plays a role in human disease, this study aimed to (i) identify the human homologue, (ii) test if the smoke-induced response occurs in human cells, (ii) determine causality between the subcellular localization of the transcript and increased mitochondrial bioenergetics, and (iii) analyze transcript levels in samples from patients with chronic obstructive pulmonary disease.

Methods: Levels and subcellular localization of the human homologue identified from an RNA transcript library were assessed in human alveolar epithelial type 2 cells exposed to smoke extract. Lipid nanoparticles were used for nucleus-targeted delivery of transcripts. Analyses included hybridization, quantitative PCR, cell growth, and Seahorse mitochondrial bioenergetics assays.

Measurements And Main Results: The levels of human homologue transiently increased and the transcripts translocated to the nuclei in human cells exposed to smoke extract. Targeted nuclear delivery of transcripts increased mitochondrial bioenergetics. Alveolar cells from humans with chronic obstructive pulmonary disease had reduced levels of the .

Conclusions: mediates mitochondrial bioenergetics in murine and human alveolar epithelial type 2 cells in response to cigarette smoke exposure, but this response is likely lost in diseases associated with chronic smoking, such as chronic obstructive pulmonary disease, due to its diminished levels.

Impact: This study describes a novel mechanism by which epithelial cells in the lungs adapt to the mitochondrial stress triggered by exposure to cigarette smoke. We show that a noncoding RNA in mitochondria is upregulated and translocated to the nuclei of alveolar epithelial type 2 cells to trigger expression of genes that restore mitochondrial bioenergetics. Mitochondria function and levels of the noncoding RNA decrease under conditions that lead to chronic obstructive pulmonary disease, suggesting that the mitochondrial noncoding RNA can serve as potential therapeutic target to restore function to halt disease progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10827093PMC
http://dx.doi.org/10.1101/2024.01.14.575591DOI Listing

Publication Analysis

Top Keywords

chronic obstructive
24
obstructive pulmonary
24
mitochondrial bioenergetics
24
alveolar epithelial
20
epithelial type
20
type cells
20
pulmonary disease
16
noncoding rna
16
cells exposed
12
cigarette smoke
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!