Unlabelled: Sex differences have complicated our understanding of the neurobiological basis of many behaviors that are key for survival. As such, continued elucidation of the similarities and differences between sexes is necessary in order to gain insight into brain function and vulnerability. The connection between the hippocampus (Hipp) and nucleus accumbens (NAc) is a crucial site where modulation of neuronal activity mediates reward-related behavior. Our previous work demonstrated that long-term potentiation (LTP) of Hipp-NAc synapses is rewarding, and that mice can make learned associations between LTP of these synapses and the contextual environment in which LTP occurred. Here, we investigate sex differences in the mechanisms underlying Hipp-NAc LTP using whole-cell electrophysiology and pharmacology. We found that males and females display similar magnitudes of Hipp-NAc LTP which occurs postsynaptically. However, LTP in females requires L-type voltage-gated Ca channels (VGCC) for postsynaptic Ca influx, while males rely on NMDA receptors (NMDAR). Additionally, females require estrogen receptor α (ERα) activity for LTP while males do not. These differential mechanisms converge as LTP in both sexes depends on CAMKII activity and occurs independently of dopamine-1 receptor (D1R) activation. Our results have elucidated sex-specific molecular mechanisms for LTP in an integral excitatory pathway that mediates reward-related behaviors, emphasizing the importance of considering sex as a variable in mechanistic studies. Continued characterization of sex-specific mechanisms underlying plasticity will offer novel insight into the neurophysiological basis of behavior, with significant implications for understanding how diverse processes mediate behavior and contribute to vulnerability to developing psychiatric disorders.
Significance Statement: Strengthening of Hipp-NAc synapses drives reward-related behaviors. Male and female mice have similar magnitudes of long-term potentiation (LTP) and both sexes have a predicted postsynaptic locus of plasticity. Despite these similarities, we illustrate here that sex-specific molecular mechanisms are used to elicit LTP. Given the bidirectional relationship between Hipp-NAc synaptic strength in mediating reward-related behaviors, the use of distinct molecular mechanisms may explain sex differences observed in stress susceptibility or response to rewarding stimuli. Discovery and characterization of convergent sex differences provides mechanistic insight into the sex-specific function of Hipp-NAc circuitry and has widespread implications for circuits mediating learning and reward-related behavior.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10827060 | PMC |
http://dx.doi.org/10.1101/2024.01.15.575709 | DOI Listing |
Aust N Z J Obstet Gynaecol
January 2025
Reproductive Services Unit, The Royal Women's Hospital, Parkville, Australia.
Background: Modern assisted reproductive technology (ART), including pre-implantation genetic testing for aneuploidy (PGT-A), has opened new avenues in understanding early embryonic events and has simultaneously raised questions about the impact of ART itself on sex ratios.
Aims: The primary aim was to investigate whether patient demographic characteristics, ovarian stimulation protocols or laboratory characteristics in ART influence sex ratios. The secondary aim was to relate the blastocyst sex ratio (BSR) to the corresponding secondary sex ratio (SSR) in our patient cohort.
Psychophysiology
January 2025
School of Psychology, Beijing Sport University, Beijing, China.
Previous studies demonstrated that sensorimotor training enhances interoceptive abilities. Athletes are highly engaged in performance-driven physical training and often incorporate-to varying degrees-sensorimotor training into their routines. In this study, we investigated the role of individual differences in interoception by comparing professional athletes of different performance levels and both sexes with recreational athletes and controls, applying a three-dimensional model of interoception.
View Article and Find Full Text PDFLiver Int
February 2025
Department of Epidemiology and Data Science, Amsterdam University Medical Centres, Amsterdam, The Netherlands.
Background And Aims: The performance of non-invasive liver tests (NITs) is known to vary across settings and subgroups. We systematically evaluated whether the performance of three NITs in detecting advanced fibrosis in patients with metabolic dysfunction-associated steatotic liver disease (MASLD) varies with age, sex, body mass index (BMI), type 2 diabetes mellitus (T2DM) status or liver enzymes.
Methods: Data from 586 adult LITMUS Metacohort participants with histologically characterised MASLD were included.
Ophthalmic Physiol Opt
January 2025
Robert O Curle Ophthalmology Suite, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
Purpose: To determine whether imaging features derived from fundus photographs contain 3D eye shape information beyond that available from spherical equivalent refraction (SER).
Methods: We analysed 99 eyes of 68 normal adults in the UK Biobank. An ellipsoid was fitted to the entire volume of each posterior eye (vitreous chamber without the lens)-segmented from magnetic resonance imaging of the brain.
Alzheimers Res Ther
January 2025
Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Sankt Augustin, Germany.
Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting millions worldwide, leading to cognitive and functional decline. Early detection and intervention are crucial for enhancing the quality of life of patients and their families. Remote Monitoring Technologies (RMTs) offer a promising solution for early detection by tracking changes in behavioral and cognitive functions, such as memory, language, and problem-solving skills.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!