Unlabelled: C-di-AMP is an essential second messenger in many bacteria but its levels must be regulated. Unregulated c-di-AMP accumulation attenuates the virulence of many bacterial pathogens, including those that do not require c-di-AMP for growth. However, the mechanisms by which c-di-AMP regulates bacterial pathogenesis remain poorly understood. In , a mutant lacking both c-di-AMP phosphodiesterases, denoted as the ΔPDE mutant, accumulates a high c-di-AMP level and is significantly attenuated in the mouse model of systemic infection. All key virulence genes are transcriptionally upregulated by the master transcription factor PrfA, which is activated by reduced glutathione (GSH) during infection. Our transcriptomic analysis revealed that the ΔPDE mutant is significantly impaired for the expression of virulence genes within the PrfA core regulon. Subsequent quantitative gene expression analyses validated this phenotype both at the basal level and upon PrfA activation by GSH. A constitutively active PrfA variant, PrfA G145S, which mimics the GSH-bound conformation, restores virulence gene expression in ΔPDE but only partially rescues virulence defect. Through GSH quantification and uptake assays, we found that the ΔPDE strain is significantly depleted for GSH, and that c-di-AMP inhibits GSH uptake. Constitutive expression of (encoding a GSH synthetase) does not restore GSH levels in the ΔPDE strain, suggesting that c-di-AMP inhibits GSH synthesis activity or promotes GSH catabolism. Taken together, our data reveals GSH metabolism as another pathway that is regulated by c-di-AMP. C-di-AMP accumulation depletes cytoplasmic GSH levels within that leads to impaired virulence program expression.
Importance: C-di-AMP regulates both bacterial pathogenesis and interactions with the host. Although c-di-AMP is essential in many bacteria, its accumulation also attenuates the virulence of many bacterial pathogens. Therefore, disrupting c-di-AMP homeostasis is a promising antibacterial treatment strategy, and has inspired several studies that screened for chemical inhibitors of c-di-AMP phosphodiesterases. However, the mechanisms by which c-di-AMP accumulation diminishes bacterial pathogenesis are poorly understood. Such understanding will reveal the molecular function of c-di-AMP, and inform therapeutic development strategies. Here, we identify GSH metabolism as a pathway regulated by c-di-AMP that is pertinent to replication in the host. Given the role of GSH as a virulence signal, nutrient, and antioxidant, GSH depletion impairs virulence program expression and likely diminishes host adaptation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10827153 | PMC |
http://dx.doi.org/10.1101/2024.01.18.576247 | DOI Listing |
Appl Microbiol Biotechnol
January 2025
Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
Butenyl-spinosyn, derived from Saccharopolyspora pogona, is a broad-spectrum and effective bioinsecticide. However, the regulatory mechanism affecting butenyl-spinosyn synthesis has not been fully elucidated, which hindered the improvement of production. Here, a high-production strain S.
View Article and Find Full Text PDFThis study investigates the synergistic inhibitory effects of combining the stimulator of interferon genes (STING) agonist cyclic diadenylate monophosphate (c-di-AMP) and ginsenoside RG3 on cisplatin (DDP)-resistant gastric cancer (GC) cells. The objective is to identify novel therapeutic targets and offers insights for the clinical management of DDP resistance. Various techniques were employed, including western blot, MTT assay, colony formation assay, scratch assay, transwell assay, tubule formation assay, flow cytometry, Hoechst 33342 fluorescence staining, and in vivo experiments, to investigate the potential mechanisms and effects of the combined application of the STING agonist and ginsenoside RG3 in reversing cisplatin resistance in gastric cancer.
View Article and Find Full Text PDFXi Bao Yu Fen Zi Mian Yi Xue Za Zhi
January 2025
Department of Microbiology and Pathogenic Biology, Air Force Military Medical University, Xi'an 710032, China. *Corresponding authors, E-mail:
Objective The prevalence of drug-resistant Mycobacterium tuberculosis (Mtb) strains is exacerbating the global burden of tuberculosis (TB), highlighting the urgent need for new treatment strategies for TB. Methods The recombinant adenovirus vaccine expressing cyclic di-adenosine monophosphate (c-di-AMP) phosphodiesterase B (CnpB) (rAd-CnpB), was administered to normal mice via mucosal immunization, either alone or in combination with drug therapy, to treat Mtb respiratory infections in mice.Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of antibodies in serum and bronchoalveolar lavage fluid (BALF).
View Article and Find Full Text PDFBiology (Basel)
December 2024
Departamento de Ingeniería Genética, Unidad Irapuato, Cinvestav 36824, Mexico.
The ongoing rise in global temperatures poses significant challenges to ecosystems, particularly impacting bacterial communities that are central to biogeochemical cycles. The resilience of wild mesophilic bacteria to temperature increases of 2-4 °C remains poorly understood. In this study, we conducted experimental evolution on six wild strains from two lineages ( and ) to examine their thermal adaptation strategies.
View Article and Find Full Text PDFCommun Biol
December 2024
Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 3, Groningen, The Netherlands.
Cyclic di-adenylate monophosphate (cyclic di-AMP) is an important second messenger in microorganisms. Cyclic di-AMP regulates bacterial cell volume and turgor via control of potassium and compatible solute transport but is also involved in many other processes, including the activation of the metazoan innate immune response to bacterial infections. We compare the activity of full-length membrane-embedded CdaA, the enzyme that synthesizes cyclic di-AMP, with the water-soluble catalytic domain CdaA-DAC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!