Purpose: Accelerated partial breast irradiation (APBI) is an attractive treatment modality for eligible patients as it has been shown to result in similar local control and improved cosmetic outcomes compared with whole breast radiation therapy. The use of online adaptive radiation therapy (OART) for APBI is promising as it allows for a reduction of planning target volume margins because breast motion and lumpectomy cavity volume changes are accounted for in daily imaging. Here we present a retrospective, single-institution evaluation on the adequacy of kV-cone beam computed tomography (CBCT) OART for APBI treatments.

Methods And Materials: Nineteen patients (21 treatment sites) were treated to 30 Gy in 5 fractions between January of 2022 and May of 2023. Time between simulation and treatment, change in gross tumor (ie, lumpectomy cavity) volume, and differences in dose volume histogram metrics with adaption were analyzed. The Wilcoxon paired, nonparametric test was used to test for dose volume histogram metric differences between the scheduled plans (initial plans recalculated on daily CBCT anatomy) and delivered plans, either the scheduled or adapted plan, which was reoptimized using daily anatomy.

Results: Median (interquartile range) time from simulation to first treatment was 26 days (21-32 days). During this same time, median gross tumor volume reduction was 16.0% (7.3%-23.9%) relative to simulation volume. Adaptive treatments took 31.3 minutes (27.4-36.6 minutes) from start of CBCT to treatment session end. At treatment, the adaptive plan was selected for 86% (89/103) of evaluable fractions. In evaluating plan quality, 78% of delivered plans met all target, organs at risk, and conformity metrics evaluated, compared with 34% of scheduled plans.

Conclusions: Use of OART for stereotactic linac-based APBI allowed for safe, high-quality treatments in this cohort of 21 treatment courses. Although treatment delivery times were longer than traditional stereotactic body treatments, there were notable improvements in plan quality for APBI using OART.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10823088PMC
http://dx.doi.org/10.1016/j.adro.2023.101414DOI Listing

Publication Analysis

Top Keywords

plan quality
12
radiation therapy
12
accelerated partial
8
partial breast
8
breast irradiation
8
online adaptive
8
adaptive radiation
8
treatment
8
oart apbi
8
lumpectomy cavity
8

Similar Publications

In order to explore the water and fertilizer requirements of eggplants in the western oasis of the river, the experiment was conducted in Minle County of Gansu Province in 2022 and 2023 under three water stress gradients and three nitrogen application levels: (1) moderate water stress (W, 50-60% in field water capacity [FC]), mild water stress (W, 60-70% in FC), and full irrigation (W, 70-80% in FC); (2) low nitrogen (N, 215 kg·ha), medium nitrogen (N, 270 kg·ha), and high nitrogen (N, 325 kg·ha). Moderate and mild water stress were applied during eggplant flowering and fruiting while full irrigation was provided during the other growth stages; a control class (CK) was established with full irrigation throughout the whole plant growth without nitrogen application. This study investigated the effects of water-saving and nitrogen reduction on the yield, quality, and water-nitrogen use efficiency of eggplants in a cold and arid environment in the Hexi Oasis irrigation area of China.

View Article and Find Full Text PDF

This paper deals with a "digital twin" (DT) approach for processing, reprocessing, and scrapping (P/R/S) technology running on a modular production system (MPS) assisted by a mobile cyber-physical robotic system (MCPRS). The main hardware architecture consists of four line-shaped workstations (WSs), a wheeled mobile robot (WMR) equipped with a robotic manipulator (RM) and a mobile visual servoing system (MVSS) mounted on the end effector. The system architecture integrates a hierarchical control system where each of the four WSs, in the MPS, is controlled by a Programable Logic Controller (PLC), all connected via Profibus DP to a central PLC.

View Article and Find Full Text PDF

This research proposes an all-metal metamaterial-based absorber with a novel geometry capable of refractive index sensing in the terahertz (THz) range. The structure consists of four concentric diamond-shaped gold resonators on the top of a gold metal plate; the resonators increase in height by 2 µm moving from the outer to the inner resonators, making the design distinctive. This novel configuration has played a very significant role in achieving multiple ultra-narrow resonant absorption peaks that produce very high sensitivity when employed as a refractive index sensor.

View Article and Find Full Text PDF

Benzo[1,2-b:6,5-b']dithiophene-4,5-diamine: A New Fluorescent Probe for the High-Sensitivity and Real-Time Visual Monitoring of Phosgene.

Sensors (Basel)

January 2025

State Key Laboratory of Marine Resource Utilization in South China Sea, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.

The detection of highly toxic chemicals such as phosgene is crucial for addressing the severe threats to human health and public safety posed by terrorist attacks and industrial mishaps. However, timely and precise monitoring of phosgene at a low cost remains a significant challenge. This work is the first to report a novel fluorescent system based on the Intramolecular Charge Transfer (ICT) effect, which can rapidly detect phosgene in both solution and gas phases with high sensitivity by integrating a benzo[1,2-b:6,5-b']dithiophene-4,5-diamine (BDTA) probe.

View Article and Find Full Text PDF

Music generation by AI algorithms like Transformer is currently a research hotspot. Existing methods often suffer from issues related to coherence and high computational costs. To address these problems, we propose a novel Transformer-based model that incorporates a gate recurrent unit with root mean square norm restriction (TARREAN).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!