Molecular-scale Insights into Cooperativity Switching of TAB Adsorption on Gold Nanoparticles.

ACS Cent Sci

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.

Published: January 2024

Quantifying adsorption behaviors is crucial for various applications such as catalysis, separation, and sensing, yet it is generally challenging to access in solution. Here, we report a combined experimental and computational study of the adsorption behaviors of alkyl-trimethylammonium bromides (TAB), a class of ligands important for colloidal nanoparticle stabilization and shape control, with various alkyl chain lengths on Au nanoparticles. We use density functional theory (DFT) to calculate TAB binding energies on Au{111} and Au{110} surfaces with standing-up and lying-down configurations, which provides insights into the adsorption affinity and cooperativity differences of TAB on these two facets. We demonstrate the key role of van der Waals interactions in determining the TAB adsorption behavior. These computational results predict and explain the experimental discovery of TAB's adsorption behavior switch from stronger affinity, negative cooperativity to weaker affinity, positive cooperativity when the concentration of TAB increases in solution. We also show that in the standing-up configuration, bilayer adsorption may occur on both facets, which can lead to different differential binding energies and consequently adsorption crossover between the two facets when the ligand concentration increases. Our combined experimental and computational approaches demonstrate a paradigm for gaining molecular-scale insights into adsorbate-surface interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10823513PMC
http://dx.doi.org/10.1021/acscentsci.3c01075DOI Listing

Publication Analysis

Top Keywords

molecular-scale insights
8
adsorption
8
tab adsorption
8
adsorption behaviors
8
combined experimental
8
experimental computational
8
binding energies
8
adsorption behavior
8
tab
6
cooperativity
4

Similar Publications

The structural and chemical properties of metal nanoparticles are often dictated by their interactions with molecular ligand shells. These interactions are highly material-specific and can vary significantly even among elements within the same group or materials with similar crystal structure. In this study, we surveyed the heterogeneous interactions between an -terphenyl isocyanide ligand and Au and Ag nanoparticles (NPs) at the single-molecule limit.

View Article and Find Full Text PDF

The strong solid-liquid interaction leads to the complicated occurrence characteristics of shale oil. However, the solid-liquid interface interaction and its controls of the occurrence state of shale oil are poorly understood on the molecular scale. In this work, the adsorption behavior and occurrence state of shale oil in pores of organic/inorganic matter under reservoir conditions were investigated by using grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

AGEing of collagen: The effects of glycation on collagen's stability, mechanics and assembly.

Matrix Biol

February 2025

Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada. Electronic address:

Advanced Glycation End Products (AGEs) are the end result of the irreversible, non-enzymatic glycation of proteins by reducing sugars. These chemical modifications accumulate with age and have been associated with various age-related and diabetic complications. AGEs predominantly accumulate on proteins with slow turnover rates, of which collagen is a prime example.

View Article and Find Full Text PDF

The effect of solution pH on the formation and surface structure of 2-pyrazinethiolate (2-PyzS) self-assembled monolayers (SAMs) formed by the adsorption of 2-mercaptopyrazine (2-PyzSH) on Au(111) was investigated using scanning tunneling microscopy (STM) and X-ray photoelectron microscopy (XPS). Molecular-scale STM observations clearly revealed that 2-PyzS SAMs at pH 2 had a short-range ordered phase of (2√3 × √21)R30° structure with a standing-up adsorption structure. However, 2-PyzS SAMs at pH 8 had a very unique long-range ordered phase, showing a "ladder-like molecular arrangement" with bright repeating rows.

View Article and Find Full Text PDF

High temperature QDs organization and re-crystallization in glass supported MgO QDs doped PMMA film.

Sci Rep

January 2025

Condensed Matter Physics & Nanoscience Research Laboratory, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010, U.P, India.

Article Synopsis
  • The study focuses on creating composite films of poly (methylmethacrylate) (PMMA) blended with magnesium oxide quantum dots (MgO QDs) at varying concentrations, and the films were annealed at 130°C for different durations to observe changes in their properties.
  • Analysis revealed that the initial crystallinity of the PMMA films decreased with annealing but slightly improved with the diffusion and coalescence of MgO QDs, leading to the formation of larger clusters that influenced the films' structural properties.
  • The research highlights the significance of temperature and molecular forces in the evolution of the film's morphology and stability, demonstrating unique energy dissipation mechanisms and the complex interplay of inter- and intra
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!