Steerable mass transport in a photoresponsive system for advanced anticounterfeiting.

iScience

School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China.

Published: February 2024

Numerous anticounterfeiting platforms using photoresponsive materials have been designed to improve information security, enabling applications in anticounterfeiting technology. However, fabricating sophisticated micro/nanostructures using bidirectional mass transport to achieve advanced anticounterfeiting remains challenging. Here, we propose one strategy to achieve steerable mass transport in a photoresponsive system with the assistance of solvent vapor at room temperature. Upon optimizing the host-guest ratio and the width of photoisomerized areas, wettability gradient is acquired just photo-patterning once, then bidirectional mass transport is realized due to the competition of mass transport induced by surface energy gradient of the material itself and flow of the solvent on the film surface with wettability gradient. Taking advantage of the interaction between solvent and film surface with wettability gradient, this bidirectional polymer flow has been successfully applied in multi-mode anticounterfeiting. This work paves a promising avenue toward high-level information storage in soft materials, demonstrating the potential applications in anticounterfeiting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10826315PMC
http://dx.doi.org/10.1016/j.isci.2024.108790DOI Listing

Publication Analysis

Top Keywords

mass transport
20
wettability gradient
12
steerable mass
8
transport photoresponsive
8
photoresponsive system
8
advanced anticounterfeiting
8
applications anticounterfeiting
8
bidirectional mass
8
solvent film
8
film surface
8

Similar Publications

Unlabelled: Respiratory syncytial virus (RSV) infections continue to plague infants, young children, and older individuals worldwide. Since there is no specific treatment for RSV, characterizing the interactions between RSV and host factors remains crucial for the eventual development of robust therapeutic interventions. In our previous study, guanylate binding protein 5 (GBP5) was shown to promote excessive RSV-small hydrophobic (RSV-SH) protein secretion by microvesicles and inhibited viral replication.

View Article and Find Full Text PDF

Fluidized Electrochemical Exfoliation of Layered Transition Metal Dichalcogenides toward Fast Production of High-Quality Nanosheets in the Aqueous Phase.

Nano Lett

January 2025

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.

The transformation of bulk transition-metal dichalcogenide (TMD) particles into ultrathin nanosheets with both an acceptable yield and preserved crystalline integrity presents a substantial challenge in electrochemical exfoliation. This challenge arises from the continuous potential stress that the materials experience in traditional exfoliation setups. Herein, we propose a new fluidized electrochemical exfoliation (FEE) method to efficiently transform TMD powders into high-quality, few-layered TMD nanosheets in the aqueous phase.

View Article and Find Full Text PDF

Morphine dependence or addiction is a serious global public health and social problem, and traditional treatments are very limited. Deep brain stimulation (DBS) has emerged as a new potential treatment for drug addiction. Repeated use of morphine leads to neuroadaptive and molecular changes in the addiction-related brain regions.

View Article and Find Full Text PDF

Coplanar Dimeric Acceptors with Bathochromic Absorption and Torsion-Free Backbones through Precise Fluorination Enabling Efficient Organic Photovoltaics with 18.63% Efficiency.

Adv Sci (Weinh)

January 2025

Guangdong-Hong Kong Joint Laboratory for Carbon Neutrality, Jiangmen Laboratory of Carbon Science and Technology, Jiangmen, Guangdong, 529199, P. R. China.

Giant dimeric acceptors (GDAs), a sub-type of acceptor materials for organic solar cells (OSCs), have garnered much attention due to the synergistic advantages of their monomeric and polymeric acceptors, forming a well-defined molecular structure with a giant molecular weight for high efficiency and stability. In this study, for the first time, two new GDAs, DYF-V and DY2F-V are designed and synthesized for OSC operation, by connecting one vinylene linker with the mono-/di-fluorinated end group on two Y-series monomers, respectively. After fluorination, both DYF-V and DY2F-V exhibit bathochromic absorption and denser packing modes due to the stronger intramolecular charge transfer effect and torsion-free backbones.

View Article and Find Full Text PDF

RNA pseudouridylation, a dynamic and reversible post-transcriptional modification found in diverse RNA species, is crucial for various biological processes, including tRNA homeostasis, tRNA transport, translation initiation regulation, pre-mRNA splicing, enhancement of mRNA translation, and translational fidelity. Disruption of pseudouridylation impairs cellular homeostasis, contributing to pathological alterations. Recent studies have highlighted its regulatory role in human diseases, particularly in tumourigenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!