Sleep is essential for physical and mental health. Polysomnography (PSG) procedures are labour-intensive and time-consuming, making diagnosing sleep disorders difficult. Automatic sleep staging using Machine Learning (ML) - based methods has been studied extensively, but frequently provides noisier predictions incompatible with typical manually annotated hypnograms. We propose an energy optimization method to improve the quality of hypnograms generated by automatic sleep staging procedures. The method evaluates the system's total energy based on conditional probabilities for each epoch's stage and employs an energy minimisation procedure. It can be used as a meta-optimisation layer over the sleep stage sequences generated by any classifier that generates prediction probabilities. The method improved the accuracy of state-of-the-art Deep Learning models in the Sleep EDFx dataset by 4.0% and in the DRM-SUB dataset by 2.8%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10824396PMC
http://dx.doi.org/10.1109/ACCESS.2023.3263477DOI Listing

Publication Analysis

Top Keywords

energy optimization
8
optimization method
8
sleep stage
8
automatic sleep
8
sleep staging
8
sleep
7
sleep-energy energy
4
method
4
method sleep
4
stage scoring
4

Similar Publications

A novel pH-responsive full-bio-based surfactant (Ca-S) containing a dynamic covalent bond is synthesized using renewable cashew phenol, 5-chloro-2-furanaldehyde, and taurine. The structure of Ca-S is characterized by Fourier transform infrared spectroscopy (FTIR) and H nuclear magnetic resonance (NMR) analysis. Limonene containing oil-in-water (O/W) microemulsions are prepared on the basis of the Ca-S surfactant and are applied to the remediation of oil-contaminated soil under low-energy conditions at ambient temperature.

View Article and Find Full Text PDF

NH-Modulated Cathodic Interfacial Spatial Charge Redistribution for High-Performance Dual-Ion Capacitors.

Nanomicro Lett

January 2025

Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.

Compared with Zn, the current mainly reported charge carrier for zinc hybrid capacitors, small-hydrated-sized and light-weight NH is expected as a better one to mediate cathodic interfacial electrochemical behaviors, yet has not been unraveled. Here we propose an NH-modulated cationic solvation strategy to optimize cathodic spatial charge distribution and achieve dynamic Zn/NH co-storage for boosting Zinc hybrid capacitors. Owing to the hierarchical cationic solvated structure in hybrid Zn(CFSO)-NHCFSO electrolyte, high-reactive Zn and small-hydrate-sized NH(HO) induce cathodic interfacial Helmholtz plane reconfiguration, thus effectively enhancing the spatial charge density to activate 20% capacity enhancement.

View Article and Find Full Text PDF

Context: This study systematically investigated the effects of single S-atom vacancy defects and composite defects (vacancy combined with doping) on the properties of MoS using density functional theory. The results revealed that N-doped S-vacancy MoS has the smallest composite defect formation energy, indicating its highest stability. Doping maintained the direct band gap characteristic, with shifts in the valence band top.

View Article and Find Full Text PDF

Narrative review of long-standing groin pain in athletes. Retrospective analysis of over 12 000 patients.

Hernia

January 2025

Centro de Patología Herniaria Argentina, Cerviño 4449, 1425, Buenos Aires, Argentina.

Purpose: This article critically examines long-standing groin pain (LSGP) in physically active adults related to sports overload by analyzing terminology, pathophysiology, and treatment.

Method: This review is based on data from over 10,000 patients managed through a multidisciplinary algorithm. (LSGP) has been variably labeled, using terms that have led to inconsistencies in understanding its origin and management.

View Article and Find Full Text PDF

A two-degree-of-freedom bistable energy harvester with a spring-magnet oscillator designed for ultra-low frequency vibration energy harvesting is presented in this paper. It combines magnetic plucking frequency upconversion and a variable potential function to achieve a high-efficiency response while also being suitably installed for applications with spatial limitations. A lumped parameter model of the piezoelectric energy harvester and the magnetic dipoles is applied to develop the theoretical model for the system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!