Cancer is currently one of the biggest causes of death in the world. Like some microorganisms, cancer cells also develop resistance to various chemotherapy drugs and are termed multidrug resistant (MDR). In this regard, there is a need to develop new alternative anticancer agents. Anticancer peptides (ACPs) with high selectivity and high cell penetration ability are a promising candidate, as well as they are easy to modify. A cyclohexapeptide called nocardiotide A was isolated from the marine sponge sp., which is cytotoxic towards several cancer cells such as MM, 1S, HeLa, and CT26 cells. Previously, nocardiotide A was synthesized with a very low yield owing to its challenging cyclization process. In this study, we synthesized [d-Ala]-nocardiotide A as a derivative of nocardiotide A using a combination of solid phase peptide synthesis (SPPS) and liquid phase peptide synthesis (LPPS). The synthesis was carried out by selecting a d-alanine residue at the C-terminus to give a desired cyclic peptide product with a yield of 31% after purification. The purified [d-Ala]-nocardiotide A was characterized using HR-ToF MS and H and C-NMR spectroscopy to validate the desired product. The anticancer activity of the peptide was determined against HeLa cancer cell lines with an IC value of 52 μM compared to the parent nocardiotide A with an IC value of 59 μM. In the future, we aim to mutate various l-amino acids in nocardiotide A to d-amino acids to prepare nocardiotide A derivatives with a higher activity to kill cancer cells with higher membrane permeation. In addition, the mechanism of action of nocardiotide A and its derivatives will be evaluated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10825734PMC
http://dx.doi.org/10.1039/d4ra00025kDOI Listing

Publication Analysis

Top Keywords

cancer cells
12
phase peptide
8
peptide synthesis
8
nocardiotide derivatives
8
nocardiotide
7
cancer
5
synthesis
4
synthesis anticancer
4
anticancer evaluation
4
evaluation [d-ala]-nocardiotide
4

Similar Publications

A common digestive system cancer with a dismal prognosis and a high death rate globally is breast cancer (BRCA). BRCA recurrence, metastasis, and medication resistance are all significantly impacted by cancer stem cells (CSCs). However, the relationship between CSCs and the tumor microenvironment in BRCA individuals remains unknown, and this information is critically needed.

View Article and Find Full Text PDF

Hydrogen sulfide (HS)-mediated protein S-sulfhydration has been shown to play critical roles in several diseases. Tumor-associated macrophages (TAMs) are the predominant population of immune cells present within solid tumor tissues, and they function to restrict antitumor immunity. However, no previous study has investigated the role of protein S-sulfhydration in TAM reprogramming in breast cancer (BC).

View Article and Find Full Text PDF

Berberine (BBR) has been proved to inhibit the malignant progression of non-small cell lung cancer (NSCLC), but the underlying molecular mechanism still needs to be further revealed. NSCLC cells (A549 and H1299) were treated with BBR. CCK8 assay, colony formation assay, flow cytometry, TUNEL staining and transwell assay were used to examine cell proliferation, apoptosis and invasion.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) significantly influence tumor progression and therapeutic resistance in colorectal cancer (CRC). However, the distributions and functions of CAF subpopulations vary across the four consensus molecular subtypes (CMSs) of CRC. This study performed single-cell RNA and bulk RNA sequencing and revealed that myofibroblast-like CAFs (myCAFs), tumor-like CAFs (tCAFs), inflammatory CAFs (iCAFs), CXCL14CAFs, and MTCAFs are notably enriched in CMS4 compared with other CMSs of CRC.

View Article and Find Full Text PDF

Hereditary diffuse gastric cancer is characterized by an increased risk of diffuse gastric cancer and lobular breast cancer, and is caused by pathogenic germline variants of E-cadherin and -E-catenin, which are key regulators of cell-cell adhesion. However, how the loss of cell-cell adhesion promotes cell dissemination remains to be fully understood. Therefore, a three-dimensional computer model was developed to describe the initial steps of diffuse gastric cancer development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!