AI Article Synopsis

  • * Conducted in China, the research used data from 1,787 treatment-naive patients to build the model, selecting key features for diagnosis and validating it through external cohorts.
  • * The gradient boosting classifier emerged as the most accurate model for predicting severe hepatic inflammation, showing promising results and resulting in a publicly available web tool for use in clinical settings.

Article Abstract

Background: With increasingly prevalent coexistence of chronic hepatitis B (CHB) and hepatic steatosis (HS), simple, non-invasive diagnostic methods to accurately assess the severity of hepatic inflammation are needed. We aimed to build a machine learning (ML) based model to detect hepatic inflammation in patients with CHB and concurrent HS.

Methods: We conducted a multicenter, retrospective cohort study in China. Treatment-naive CHB patients with biopsy-proven HS between April 2004 and September 2022 were included. The optimal features for model development were selected by SHapley Additive explanations, and an ML algorithm with the best accuracy to diagnose moderate to severe hepatic inflammation (Scheuer's system ≥ G3) was determined and assessed by decision curve analysis (DCA) and calibration curve. This study is registered with ClinicalTrials.gov (NCT05766449).

Findings: From a pool of 1,787 treatment-naive patients with CHB and HS across eleven hospitals, 689 patients from nine of these hospitals were chosen for the development of the diagnostic model. The remaining two hospitals contributed to two independent external validation cohorts, comprising 509 patients in validation cohort 1 and 589 in validation cohort 2. Eleven features regarding inflammation, hepatic and metabolic functions were identified. The gradient boosting classifier (GBC) model showed the best performance in predicting moderate to severe hepatic inflammation, with an area under the receiver operating characteristic curve (AUROC) of 0.86 (95% CI 0.83-0.88) in the training cohort, and 0.89 (95% CI 0.86-0.92), 0.76 (95% CI 0.73-0.80) in the first and second external validation cohorts, respectively. A publicly accessible web tool was generated for the model.

Interpretation: Using simple parameters, the GBC model predicted hepatic inflammation in CHB patients with concurrent HS. It holds promise for guiding clinical management and improving patient outcomes.

Funding: This research was supported by the National Natural Science Foundation of China (No. 82170609, 81970545), Natural Science Foundation of Shandong Province (Major Project) (No. ZR2020KH006), Natural Science Foundation of Jiangsu Province (No.BK20231118), Tianjin Key Medical Discipline (Specialty), Construction Project, TJYXZDXK-059B, Tianjin Health Science and Technology Project key discipline special, TJWJ2022XK034, and Research project of Chinese traditional medicine and Chinese traditional medicine combined with Western medicine of Tianjin municipal health and Family Planning Commission (2021022).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10827491PMC
http://dx.doi.org/10.1016/j.eclinm.2023.102419DOI Listing

Publication Analysis

Top Keywords

hepatic inflammation
24
natural science
12
science foundation
12
hepatic
9
chronic hepatitis
8
patients concurrent
8
hepatic steatosis
8
cohort study
8
patients chb
8
chb patients
8

Similar Publications

Hepatic infection in a dog with cavitary lung disease.

Can Vet J

January 2025

Central Victoria Veterinary Hospital, VCA Canada, 760 Roderick Street, Victoria, British Columbia V8X 2R3 (Xie, Seguin, Brownlee, Boller); Department of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta T2N 4Z6 (Boller).

A 9-year-old neutered male cairn terrier dog was initially presented because of inappetence, increased respiratory effort, and occasional coughing. A cavitary lung mass was diagnosed using CT and removed with lung lobectomy. Histopathology of the mass revealed necrosuppurative inflammation with acid-fast rod bacteria in macrophages, with spp.

View Article and Find Full Text PDF

Introduction: Cardiac tamponade is a life-threatening condition resulting from fluid accumulation in the pericardial sac, leading to decreased cardiac output and shock. Various etiologies can cause cardiac tamponade, including liver cirrhosis, which may be induced by autoimmune hepatitis. Autoimmune hepatitis is a chronic inflammatory liver disease characterized by interface hepatitis, elevated transaminase levels, autoantibodies, and increased immunoglobulin G levels.

View Article and Find Full Text PDF

Alterations in bile acid profile and pathways contribute to hepatic inflammation in cancer cachexia, a syndrome worsening the prognosis of cancer patients. As the gut microbiota impinges on host metabolism through bile acids, the current study aimed to explore the functional contribution of gut microbial dysbiosis to bile acid dysmetabolism and associated disorders in cancer cachexia. Using three mouse models of cancer cachexia (the C26, MC38 and HCT116 models), we evidenced a reduction in the hepatic levels of several secondary bile acids, mainly taurodeoxycholic (TDCA).

View Article and Find Full Text PDF

Intestinal TM6SF2 protects against metabolic dysfunction-associated steatohepatitis through the gut-liver axis.

Nat Metab

January 2025

Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.

Transmembrane-6 superfamily member 2 (TM6SF2) regulates hepatic fat metabolism and is associated with metabolic dysfunction-associated steatohepatitis (MASH). TM6SF2 genetic variants are associated with steatotic liver disease. The pathogenesis of MASH involves genetic factors and gut microbiota alteration, yet the role of host-microbe interactions in MASH development remains unclear.

View Article and Find Full Text PDF

Monocyte chemoattractant protein-1 (MCP-1) is regarded as a crucial proinflammatory cytokine that controls the migration and entry of macrophages. It has been demonstrated that chemokine ligand 2 and its receptor, Chemokine receptor 2, are both implicated in several liver disorders. In a similar context, immunity mediators are overexpressed and stimulated by MCP-1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!