Digital Light Processing (DLP) is a vat photopolymerization-based 3D printing technology that fabricates parts typically made of chemically crosslinked polymers. The rapidly growing DLP market has an increasing demand for polymer raw materials, along with growing environmental concerns. Therefore, circular DLP printing with a closed-loop recyclable ink is of great importance for sustainability. The low-ceiling temperature alkyl-substituted δ-valerolactone (VL) is an industrially accessible biorenewable feedstock for developing recyclable polymers. In this work, acrylate-functionalized poly(δ-valerolactone) (PVLA), synthesized through the ring-opening transesterification polymerization of VL, is used as a platform photoprecursor to improve the chemical circularity in DLP printing. A small portion of photocurable reactive diluent (RD) turns the unprintable PVLA into DLP printable ink. Various photocurable monomers can serve as RDs to modulate the properties of printed structures for applications like sacrificial molds, soft actuators, sensors, etc. The intrinsic depolymerizability of PVLA is well preserved, regardless of whether the printed polymer is a thermoplastic or thermoset. The recovery yield of virgin quality VL monomer is 93% through direct bulk thermolysis of the printed structures. This work proposes the utilization of depolymerizable photoprecursors and highlights the feasibility of biorenewable VL as a versatile material platform toward circular DLP printing.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202310040DOI Listing

Publication Analysis

Top Keywords

dlp printing
12
chemical circularity
8
circular dlp
8
printed structures
8
dlp
6
printing
5
circularity printing
4
printing biobased
4
biobased Δ-valerolactone
4
Δ-valerolactone digital
4

Similar Publications

Emerging techniques of additive manufacturing, such as vat-based three-dimensional (3D) bioprinting, offer novel routes to prepare personalized scaffolds of complex geometries. However, there is a need to develop bioinks suitable for clinical translation. This study explored the potential of bacterial-sourced methacrylate levan (LeMA) as a bioink for the digital light processing (DLP) 3D bioprinting of bone tissue scaffolds.

View Article and Find Full Text PDF

Aim: The aim of this systematic review was to evaluate the effect of build orientation on the mechanical and physical properties of additively manufactured resin using digital light processing (DLP).

Background: The properties of 3D-printed materials are influenced by various factors, including the type of additive manufacturing (AM) system and build orientation. There is a scarcity of literature on the effect of build orientation on the mechanical and physical properties of additively manufactured resins using DLP technology in dentistry.

View Article and Find Full Text PDF

Digital light processing printing of non-modified protein-only compositions.

Mater Today Bio

February 2025

Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.

This study explores the utilization of digital light processing (DLP) printing to fabricate complex structures using native gelatin as the sole structural component for applications in biological implants. Unlike approaches relying on synthetic materials or chemically modified biopolymers, this research harnesses the inherent properties of gelatin to create biocompatible structures. The printing process is based on a crosslinking mechanism using a di-tyrosine formation initiated by visible light irradiation.

View Article and Find Full Text PDF

3D-Printed Acrylated Soybean Oil Scaffolds with Vitrimeric Properties Reinforced by Tellurium-Doped Bioactive Glass.

Polymers (Basel)

December 2024

Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

In this study, we present novel, vitrimeric and biobased scaffolds that are designed for hard tissue applications, composed of acrylated, epoxidized soybean oil (AESO) and reinforced with bioactive glass that is Tellurium doped (BG-Te) and BG-Te silanized, to tune the mechanical and antibacterial properties. The manufacture's method consisted of a DLP 3D-printing method, enabling precise resolution and the possibility to manufacture a hollow and complex structure. The resin formulation was optimized with a biobased, reactive diluent to adjust the viscosity for an optimal 3D-printing process.

View Article and Find Full Text PDF

The aim of this study was to evaluate the mechanical properties and degree of conversion of a novel 3D-printing model resin and compare it to eight commercially available model resins. An experimental resin formulated by our proprietary resin technology along with DentaModel, NextDent 2, KeyModel Ultra, Rodin Model, Die and Model 2, DMR III, LCD Grey, and Grey Resin were used in this study. Parallelepiped specimens (2 × 2 × 25 mm, n = 5) were printed and measured for their flexural strength (FS), flexural modulus (FM), and modulus of resilience (MR) in accordance with ISO-4049.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!