Context: Gait biomechanics and daily steps are important aspects of knee joint loading that change following anterior cruciate ligament reconstruction (ACLR). Understanding their relationship during the first 6 months post-ACLR could help develop comprehensive rehabilitation interventions that promote optimal joint loading following injury, thereby improving long-term knee joint health.

Objective: Our primary objective was to compare biomechanical gait waveforms throughout stance at early timepoints post-ACLR in individuals with different daily step behaviors at 6 months post-ACLR. The secondary aim was to examine how these gait waveforms compare to those of uninjured controls.

Design: Case-Control Study.

Setting: Laboratory.

Patients Or Other Participants: Individuals with primary ACLR assigned to a low (LSG) (n=13) or high step group (HSG) (n=19) based on their average daily steps at 6 months post- ACLR, and uninjured matched controls (n=32).

Main Outcome Measure(s): Gait biomechanics were collected at 2, 4, and 6 months post-ACLR in ACLR individuals and at a single session for controls. Knee adduction moment (KAM), knee extension moment (KEM), and knee flexion angle (KFA) waveforms were calculated during gait stance and then compared via functional waveform analyses. Mean differences and corresponding 95% confident intervals between groups were reported.

Results: Primary results demonstrated lesser KFA (1-45%, 79-92% of stance) and greater KEM (65-93% of stance) at 2 months and greater KAM (14-20%, 68-92% of stance) at 4 months post-ACLR for the HSG compared to the LSG. KEM, KAM, and KFA waveforms differed across various proportions of stance at all timepoints between step groups and controls.

Conclusion: Differences in gait biomechanics are present at 2 and 4 months post-ACLR between step groups, with the LSG demonstrating an overall more flexed knee and more profound stepwise underloading throughout stance than the HSG. The results indicate a relation between early gait biomechanics and later daily steps behaviors following ACLR.

Download full-text PDF

Source
http://dx.doi.org/10.4085/1062-6050-0464.23DOI Listing

Publication Analysis

Top Keywords

gait biomechanics
20
months post-aclr
20
daily steps
16
early gait
8
anterior cruciate
8
cruciate ligament
8
ligament reconstruction
8
biomechanics daily
8
knee joint
8
joint loading
8

Similar Publications

Skipping represents a training alternative to running due to its lower knee contact forces and higher whole-body metabolic cost. The increased metabolic cost of skipping is associated with a higher vertical center-of-mass (COM) displacement during the support and flight phases of the skipping hop compared to running. However, skipping has lower muscle force impulses than running.

View Article and Find Full Text PDF

Influence of age and gender on gait kinematics of pelvis and hip in healthy adults aged 19-60 years.

Front Bioeng Biotechnol

January 2025

MGM Centre of Human Movement Science, MGM School of Physiotherapy, MGM Institute of Health Sciences, Navi Mumbai, India.

Purpose: Pelvic and hip motion are pivotal in maintaining postural control and energy efficient gait. An insight into influence of age and gender on the coupled motion of hip and pelvis in gait-cycle will guide clinical rehabilitation strategies and pertinent technology-design for specific age-groups. Therefore, present study evaluated pelvic and hip-joint gait kinematics in healthy females and males across adult-hood.

View Article and Find Full Text PDF

Self-powered devices for human motion monitoring and energy harvesting have garnered widespread attention in recent research. In this work, we designed a honeycomb-structured triboelectric nanogenerator (H-TENG) using polyester cloth and Teflon tape, with aluminum foil as the conductive electrode. This design leverages the large surface area and flexibility of textiles, resulting in significant performance improvements.

View Article and Find Full Text PDF

Kinetics of recovery and normalization of running biomechanics following aerobic-based exercise-induced muscle damage in recreational male runners.

J Sci Med Sport

January 2025

Department of Health Promotion, School of Public Health, Faculty of Medical and Health Sciences, Sylvan Adams Sports Institute, Tel-Aviv University, Israel. Electronic address:

Objectives: The study aimed to examine the effects of exercise-induced muscle damage on running kinetics.

Design: Twenty-six adult recreational male runners performed 60 min of downhill running (-10 %) at 65 % of maximal heart rate. Running gait changes, systemic and localized muscle damage markers were assessed pre - and post-exercise induced muscle damage protocol.

View Article and Find Full Text PDF

Influence of prosthetic foot selection on walking performance during various load carriage conditions.

Clin Biomech (Bristol)

January 2025

Department of Veterans Affairs, Center for Limb Loss and MoBility, Seattle, WA, USA; Department of Mechanical Engineering, University of Washington, Seattle, WA, USA. Electronic address:

Background: Ambulatory individuals with lower limb amputations often face challenges with body support, body propulsion, and balance control. Carrying an infant, toddler, backpack, or other load can exacerbate these challenges and highlights the importance of prescribing the most suitable prosthetic foot. The aim of this study was to examine the influence of five different prosthetic feet on walking performance during various load carriage conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!