Complexes of iron in high oxidation states are captivating research subjects due to their pivotal role as active intermediates in numerous catalytic processes. Structural and spectroscopic studies of well-defined model complexes often provide evidence of these intermediates. In addition to the fundamental molecular and electronic structure insights gained by these complexes, their reactivity also affects our understanding of catalytic reaction mechanisms for small molecule and bond-activation chemistry. Here, we report the synthesis, structural and spectroscopic characterization of a stable, octahedral Fe(VI) nitrido complex and an authenticated, unique Fe(VII) species, prepared by one-electron oxidation. The super-oxidized Fe(VII) nitride rearranges to an Fe(V) imide through an intramolecular amination mechanism and ligand exchange, which is characterized spectroscopically and computationally. This enables combined reactivity and stability studies on a single molecular system of a rare high-valent complex redox pair. Quantum chemical calculations complement the spectroscopic parameters and provide evidence for a diamagnetic (S = 0) d Fe(VI) and a genuine S = 1/2, d Fe(VII) configuration of these super-oxidized nitrido complexes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10997499 | PMC |
http://dx.doi.org/10.1038/s41557-023-01418-4 | DOI Listing |
Dalton Trans
January 2025
Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
We report the synthesis of a series of molybdenum nitrido complexes supported by bis-phenolate N-heterocyclic and mesoionic carbenes (NHC & MIC). The reaction between MoN(OBu) and the corresponding azolium salts [H3L1]Cl and [H3L2]Cl (with L1 = bis-phenolate triazolylidene and L2 = bis-phenolate benzimidazolylidene) gives clean access to the corresponding NHC/MIC complexes 1-Cl and 2-Cl. Electrochemical investigations of these complexes showed that they can be reversibly reduced at potentials of -1.
View Article and Find Full Text PDFAcc Chem Res
September 2024
School of Optoelectronic Materials and Technology, Jianghan University; Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, China.
ConspectusMetal oxo (M═O) and nitrido (M≡N) complexes are two important classes of high-valent transition metal complexes. The use of M═O as oxidants in chemical and biological systems has been extensively investigated. Nature makes use of M═O in enzymes such as cytochrome to oxidize a variety of substrates.
View Article and Find Full Text PDFChemistry
September 2024
Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany.
A series of titanium μ-nitrido complexes supported by the triamidoamine ligand Xy-NN (Xy-NN={(3,5-MeCH)NCHCH}N) is reported. The titanium azido complex [(Xy-NN)TiN] (1-N), prepared by salt metathesis of the chloride complex [(Xy-NN)TiCl] (1-Cl) with NaN, reacted with lithium metal or with alkali metal naphthalenides (alkali metal M=Na, K, and Rb) in THF to give the corresponding dinuclear μ-nitrido complexes M[(Xy-NN)Ti=N-Ti(Xy-NN)] (2-M; M=Li, Na, K, Rb). Single crystal X-ray diffraction studies of 2-Li, 2-Na, and 2-K revealed alkali metal dependent structures in the solid state.
View Article and Find Full Text PDFACS Org Inorg Au
June 2024
Georg-August-Universität Göttingen, Institut für Anorganische Chemie, Tammannstr. 4, Göttingen 37077, Germany.
Molybdenum(III) complexes bearing pincer-type ligands are well-known catalysts for N-to-NH reduction. We investigated herein the impact of an anionic PNP pincer-type ligand in a Mo(III) complex on the (electro)chemical N splitting ([MoCl], , H = 2,6-bis((di--butylphosphaneyl)methyl)-pyridin-4-one). The increased electron-donating properties of the anionic ligand should lead to a stronger degree of N activation.
View Article and Find Full Text PDFJ Phys Chem A
May 2024
Department of Chemistry, University of Wisconsin - Madison, Madison, Wisconsin 53706, United States.
The catalyzed electrochemical oxidation of ammonia to nitrogen (AOR) is an important fuel-cell half-reaction that underpins a future nitrogen-based energy economy. Our laboratory has reported spontaneous chemical and electrochemical oxidation of ammonia to dinitrogen via reaction of ammonia with the metal-metal bonded diruthenium complex Ru(chp)OTf (chp = 2-chloro-6-hydroxypyridinate, TfO = trifluoromethanesulfonate). This complex facilitates electrocatalytic ammonia oxidation at mild applied potentials of -255 mV vs ferrocene, which is the [Ru(chp)(NH)] redox potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!