Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nucleic acid detection, as an important molecular diagnostic method, is widely used in bacterial identification, disease diagnosis. For detecting the nucleic acid of bacteria, the prerequisite is to release nucleic acids inside the bacteria. The common means to release nucleic acids is the chemical method, which involves complex processes, is time-consuming, and remains chemical inhibitors. Compared with chemical methods, electroporation as a physical method has the advantages of easy operation, short-time consumption, and chemical reagents free. However, the current works using electroporation often necessitates high-frequency or high-voltage conditions, entailing bulky power devices. Herein, we propose a low-voltage alternant direct current (LADC) electroporation chip and the corresponding miniature device for ultrafast releasing the genome DNA from Helicobacter pylori (H. pylori) for detection. We connected a micrometer-interdigital electrode in the chip with a 20 V portable battery to make the miniature device. Using this low-voltage device, our chip released genome DNA of H. pylori within only 5 ms, achieving a cell lysis rate of 99.5%. We further combined this chip with a colorimetric loop-mediated isothermal amplification assay to visually detect H. pylori within ~ 25 min at 10 CFU/μL. We detected 11 clinical samples using the chip, and the detection results were consistent with those of the clinical standard. The results indicate that the LADC electroporation chip is useful for ultrafast release of genome DNA from bacteria and is expected to promote the development of nucleic acid detection in POCT and other scenarios.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-024-06187-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!