The adverse environmental impacts of greenhouse gas emissions and persistent waste accumulation are driving the demand for sustainable approaches to clean-energy production and waste recycling. By coupling the thermodynamically favourable oxidation of waste-derived organic carbon streams with fuel-forming reduction reactions suitable for producing clean hydrogen or converting CO to fuels, solar reforming simultaneously valorizes waste and generates useful chemical products. With appropriate light harvesting, catalyst design, device configurations and waste pre-treatment strategies, a range of sustainable fuels and value-added chemicals can already be selectively produced from diverse waste feedstocks, including biomass and plastics, demonstrating the potential of solar-powered upcycling plants. This Review highlights solar reforming as an emerging technology that is currently transitioning from fundamental research towards practical application. We investigate the chemistry and compatibility of waste pre-treatment, introduce process classifications, explore the mechanisms of different solar reforming technologies, and suggest appropriate concepts, metrics and pathways for various deployment scenarios in a net-zero-carbon future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41570-023-00567-x | DOI Listing |
Animals (Basel)
December 2024
School of Science & Technology, University of New England, Armidale, NSW 2351, Australia.
Human interaction with birds has never been more positive and supported by so many private citizens and professional groups. However, direct mortality of birds from anthropogenic causes has increased and has led to significant annual losses of birds. We know of the crucial impact of habitat loss on the survival of birds and its effects on biodiversity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, China.
Solar-driven dry reforming of methane (DRM) offers a milder, more cost-effective, and promising environmentally friendly pathway compared to traditional thermal catalytic DRM. Numerous studies have extensively investigated inexpensive Ni-based catalysts for application in solar-driven DRM. However, these catalysts often suffer from activity loss due to carbon accumulation.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Executive Management College of CHN ENERGY, No.7 Binhe Avenue, North District of Future Science City, Changping District, Beijing, 102211, China.
In 2012, Prof. Henry Snaith demonstrated the first solid-state perovskite solar cell (PSC) with an efficiency of 10.9%, igniting a surge of interest and research into perovskite materials for their potential to revolutionize the photovoltaic (PV) industry.
View Article and Find Full Text PDFSmall
December 2024
Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
The study presents a multi-functional and semiconductor polymer poly[bis(3-hexylthiophen-2-yl)thieno[3,4-c]pyrrole-4,6-dione] (PBDTTPD) doping strategy that significantly enhanced the performance of the two-terminal all-perovskite tandem perovskite solar cells (T-PSCs). An optimized power conversion efficiency (PCE) of 26.87% has been achieved.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland.
WO/Ag/TiO composite photoelectrodes were formed via the high-temperature calcination of a WO film, followed by the sputtering of a very thin silver film and deposition of an overlayer of commercial TiO nanoparticles. These synthetic photoanodes were characterized in view of the oxidation of a model organic compound glucose combined with the generation of hydrogen at a platinum cathode. During prolonged photoelectrolysis under simulated solar light, these photoanodes demonstrated high and stable photocurrents of ca.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!