Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Two 2,7-dicyaonfluorene-based molecules 27-DCN and 27-tDCN are utilized as acceptors (A) to combine with hexaphenylbenzene-centered donors (D) TATT and DDT-HPB for probing the exciplex formation. The photophysical characteristics reveal that the steric hindered 27-tDCN not only can increase the distance of D and A, resulting in a hypsochromic emission, but also dilute the concentration of triplet excitons to suppress non-radiative process. The 27-tDCN-based exciplex-forming blends exhibit better photoluminescence quantum yield (PLQY) as compared to those of 27-DCN-based pairs. In consequence, among these D:A blends, the device employing DDT-HPB:27-tDCN blend as the emissiom layer (EML) exhibits the best EQE of 3.0% with electroluminescence (EL) λ of 542 nm. To further utilize the exciton electrically generated in exciplex-forming system, two D-A-D-configurated fluorescence emitter DTPNT and DTPNBT are doped into the DDT-HPB:27-tDCN blend. The nice spectral overlap ensures fast and efficient Förster energy transfer (FRET) process between the exciplex-forming host and the fluorescent quests. The red device adopting DDT-HPB:27-tDCN:10 wt% DTPNT as the EML gives EL λ of 660 nm and maximum external quantum efficiency (EQE) of 5.8%, while EL λ of 685 nm and EQE of 5.0% for the EML of DDT-HPB:27-tDCN:10 wt% DTPNBT. This work manifests a potential strategy to achieve high efficiency red and deep red OLED devices by incorporating the highly fluorescent emitters to extract the excitons generated by the exciplex-forming blend with bulky acceptor for suppressing non-radiative process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10827723 | PMC |
http://dx.doi.org/10.1038/s41598-024-52680-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!