A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Guided bone regeneration of calcium phosphate-coated and strontium ranelate-doped titanium mesh in a rat calvarial defect model. | LitMetric

Purpose: When applied alone, titanium (Ti) mesh may not effectively block the penetration of soft tissues, resulting in insufficient new bone formation. This study aimed to confer bioactivity and improve bone regeneration by doping calcium phosphate (CaP) precipitation and strontium (Sr) ranelate onto a TiO₂ nanotube (TNT) layer on the surface of a Ti mesh.

Methods: The TNT layer was obtained by anodizing on the Ti mesh, and CaP was formed by cyclic pre-calcification. The final specimens were produced by doping with Sr ranelate. The surface properties of the modified Ti mesh were investigated using high-resolution field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. To evaluate the effects of surface treatment on cell viability, osteoblasts were cultured for 1-3 days, and their absorbance was subsequently measured. In an experiment, critical-size defects were created in rat calvaria (Ф=8 mm). After 5 weeks, the rats were sacrificed (n=4 per group) and bone blocks were taken for micro-computed tomography and histological analysis.

Results: After immersing the Sr ranelate-doped Ti mesh in simulated body fluid, the protrusions observed in the initial stage of hydroxyapatite were precipitated as a dense structure. On day 3 of osteoblast culture, cell viability was significantly higher on the pre-calcified Sr ranelate-doped Ti mesh surface than on the untreated Ti mesh surface (<0.05). In the experiment, a bony bridge formed between the surrounding basal bone and the new bone under the Sr ranelate-doped Ti mesh implanted in a rat calvarial defect, closing the defect. New bone mineral density (0.91±0.003 g/mm³) and bone volume (29.35±2.082 mm³) significantly increased compared to the other groups (<0.05).

Conclusions: Cyclic pre-calcification of a Ti mesh with a uniform TNT layer increased bioactivity, and subsequent doping with Sr ranelate effectively improved bone regeneration in bone defects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11543329PMC
http://dx.doi.org/10.5051/jpis.2303000150DOI Listing

Publication Analysis

Top Keywords

bone regeneration
8
titanium mesh
8
tnt layer
8
cell viability
8
ranelate-doped mesh
8
mesh surface
8
mesh
7
surface
5
guided bone
4
regeneration calcium
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!