Anxiety disorders are highly prevalent worldwide and can affect people of all ages, genders and backgrounds. Much efforts and resources have been directed at finding new anxiolytic agents and drug delivery systems (DDSs) especially for cancer patients to enhance targeted drug delivery, reduce drug adverse effects, and provide an analgesic effect. The aim of this study was (1) to design and develop novel nanofiber-based DDSs intended for the oral administration of new 1,2,3-triazolo-1,4-benzodiazepines derivatives, (2) to investigate the physical solid-state properties of such drug-loaded nanofibers, and (3) to gain knowledge of the anxiolytic activity of the present new benzodiazepines in rodents in vivo. The nanofibers loaded with 1,2,3-triazolo-1,4-benzodiazepine derivatives were prepared by means of electrospinning (ES). Field-emission scanning electron microscopy and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy were used for the physicochemical characterization of nanofibers. The anxiolytic activity of new derivatives and drug-loaded nanofibers was studied with an elevated plus maze test and light-dark box test. New 1,2,3-triazolo-1,4-benzodiazepine derivatives showed a promising anxiolytic effect in mice with clear changes in behavioral reactions in both tests. The nanofiber-based DDS was found to be feasible in the oral delivery of the present benzodiazepine derivatives. The nanofibers generated by means of ES presented the diameter in a nanoscale, uniform fiber structure, capacity for drug loading, and the absence of defects. The present findings provide new insights in the drug treatment of anxiety disorders with new benzodiazepine derivatives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejps.2024.106712 | DOI Listing |
Nat Commun
December 2024
Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.
The potential for mitigating intestinal inflammation through the gut-bone axis in the treatment of osteoporosis is significant. While various gut-derived postbiotics or bacterial metabolites have been created as dietary supplements to prevent or reverse bone loss, their efficacy and safety still need improvement. Herein, a colon-targeted drug delivery system is developed using surface engineering of polyvinyl butyrate nanoparticles by shellac resin to achieve sustained release of postbiotics butyric acid at the colorectal site.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China.
Small-scale continuum robots hold promise for interventional diagnosis and treatment, yet existing models struggle to achieve small size, precise steering, and visualized functional treatment simultaneously, termed an "impossible trinity". This study introduces an optical fiber-based continuum robot integrated imaging, high-precision motion, and multifunctional operation abilities at submillimeter-scale. With a slim profile of 0.
View Article and Find Full Text PDFNat Commun
December 2024
College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
Delivering protein drugs to the central nervous system (CNS) is challenging due to the blood-brain and blood-spinal cord barrier. Here we show that neutrophils, which naturally migrate through these barriers to inflamed CNS sites and release neutrophil extracellular traps (NETs), can be leveraged for therapeutic delivery. Tannic acid nanoparticles tethered with anti-Ly6G antibody and interferon-β (aLy6G-IFNβ@TLP) are constructed for targeted neutrophil delivery.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China.
Owing to their attractive antitumor effects, aminated fullerene derivatives are emerging as promising therapeutic drugs for cancer. However, their in vivo applications are severely limited due to cation toxicity. To address this problem, human heavy chain ferritin (HFn), possessing natural biocompatibility is utilized, to develop a novel supramolecular assembly drug delivery system.
View Article and Find Full Text PDFACS Infect Dis
December 2024
Centre of Experimental Medicine and Surgery, Institute of Medical Sciences Banaras Hindu University, Varanasi-221005, U.P., India.
Protozoan parasite infections, particularly leishmaniasis, present significant public health challenges in tropical and subtropical regions, affecting socio-economic status and growth. Despite advancements in immunology, effective vaccines remain vague, leaving drug treatments as the primary intervention. However, existing medications face limitations, such as toxicity and the rise of drug-resistant parasites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!