AI Article Synopsis

  • Depression is widespread and often goes undiagnosed, but AI models utilizing spoken responses to interviews may provide a better screening method.
  • In a study involving 393 diverse adults using the Aiberry app, researchers validated an AI model's predictions of depression severity against self-reported scores and found strong agreement.
  • The AI showed no bias related to age, sex, race, or ethnicity, although access limitations and self-selection among participants could affect the study's generalizability.

Article Abstract

Background: Depression is prevalent, chronic, and burdensome. Due to limited screening access, depression often remains undiagnosed. Artificial intelligence (AI) models based on spoken responses to interview questions may offer an effective, efficient alternative to other screening methods.

Objective: The primary aim was to use a demographically diverse sample to validate an AI model, previously trained on human-administered interviews, on novel bot-administered interviews, and to check for algorithmic biases related to age, sex, race, and ethnicity.

Methods: Using the Aiberry app, adults recruited via social media (N = 393) completed a brief bot-administered interview and a depression self-report form. An AI model was used to predict form scores based on interview responses alone. For all meaningful discrepancies between model inference and form score, clinicians performed a masked review to determine which one they preferred.

Results: There was strong concurrent validity between the model predictions and raw self-report scores (r = 0.73, MAE = 3.3). 90 % of AI predictions either agreed with self-report or with clinical expert opinion when AI contradicted self-report. There was no differential model performance across age, sex, race, or ethnicity.

Limitations: Limitations include access restrictions (English-speaking ability and access to smartphone or computer with broadband internet) and potential self-selection of participants more favorably predisposed toward AI technology.

Conclusion: The Aiberry model made accurate predictions of depression severity based on remotely collected spoken responses to a bot-administered interview. This study shows promising results for the use of AI as a mental health screening tool on par with self-report measures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jad.2024.01.212DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
spoken responses
8
age sex
8
sex race
8
bot-administered interview
8
model
6
depression
5
self-report
5
conversational assessment
4
assessment artificial
4

Similar Publications

Weighted Echo State Graph Neural Networks Based on Robust and Epitaxial Film Memristors.

Adv Sci (Weinh)

January 2025

College of Physics Science & Technology, School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, Hebei University, Baoding, 071002, China.

Hardware system customized toward the demands of graph neural network learning would promote efficiency and strong temporal processing for graph-structured data. However, most amorphous/polycrystalline oxides-based memristors commonly have unstable conductance regulation due to random growth of conductive filaments. And graph neural networks based on robust and epitaxial film memristors can especially improve energy efficiency due to their high endurance and ultra-low power consumption.

View Article and Find Full Text PDF

The COVID-19 pandemic provided an ideal scenario for studying the care of the elderly population, we implemented a tool named the Geriatric Measure (GM) tool to determine the severity and need for hospitalization. The objective of the study is to evaluate if the results of a brief Geriatric Measure tool are associated with mortality and other outcomes among older adults with COVID-19 treated in the emergency department. Retrospective observational cohort study.

View Article and Find Full Text PDF

Machine learning techniques for non-destructive estimation of plum fruit weight.

Sci Rep

January 2025

Crop and Horticultural Science Research Department, Mazandaran Agricultural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Tajrish, Iran.

Plum fruit fresh weight (FW) estimation is crucial for various agricultural practices, including yield prediction, quality control, and market pricing. Traditional methods for estimating fruit weight are often destructive, time-consuming, and labor-intensive. In this study, we addressed the problem of predicting plum FW using artificial intelligence (AI) methods based on fruit dimensions.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) significantly influence tumor progression and therapeutic resistance in colorectal cancer (CRC). However, the distributions and functions of CAF subpopulations vary across the four consensus molecular subtypes (CMSs) of CRC. This study performed single-cell RNA and bulk RNA sequencing and revealed that myofibroblast-like CAFs (myCAFs), tumor-like CAFs (tCAFs), inflammatory CAFs (iCAFs), CXCL14CAFs, and MTCAFs are notably enriched in CMS4 compared with other CMSs of CRC.

View Article and Find Full Text PDF

Graph data is essential for modeling complex relationships among entities. Graph Neural Networks (GNNs) have demonstrated effectiveness in processing low-order undirected graph data; however, in complex directed graphs, relationships between nodes extend beyond first-order connections and encompass higher-order relationships. Additionally, the asymmetry introduced by edge directionality further complicates node interactions, presenting greater challenges for extracting node information.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!