SEG-LUS: A novel ultrasound segmentation method for liver and its accessory structures based on muti-head self-attention.

Comput Med Imaging Graph

Collaborative Innovation Center for Maternal and Infant Health Service Application Technology, Quanzhou Medical College, Quanzhou 362011, China; Department of Ultrasound, The Second Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China. Electronic address:

Published: April 2024

Although liver ultrasound (US) is quick and convenient, it presents challenges due to patient variations. Previous research has predominantly focused on computer-aided diagnosis (CAD), particularly for disease analysis. However, characterizing liver US images is complex due to structural diversity and a limited number of samples. Normal liver US images are crucial, especially for standard section diagnosis. This study explicitly addresses Liver US standard sections (LUSS) and involves detailed labeling of eight anatomical structures. We propose SEG-LUS, a US image segmentation model for the liver and its accessory structures. In SEG-LUS, we have adopted the shifted windows feature encoder combined with the cross-attention mechanism to adapt to capturing image information at different scales and resolutions and address context mismatch and sample imbalance in the segmentation task. By introducing the UUF module, we achieve the perfect fusion of shallow and deep information, making the information retained by the network in the feature extraction process more comprehensive. We have improved the Focal Loss to tackle the imbalance of pixel-level distribution. The results show that the SEG-LUS model exhibits significant performance improvement, with mPA, mDice, mIOU, and mASD reaching 85.05%, 82.60%, 74.92%, and 0.31, respectively. Compared with seven state-of-the-art semantic segmentation methods, the mPA improves by 5.32%. SEG-LUS is positioned to serve as a crucial reference for research in computer-aided modeling using liver US images, thereby advancing the field of US medicine research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compmedimag.2024.102338DOI Listing

Publication Analysis

Top Keywords

liver images
12
liver accessory
8
accessory structures
8
liver
7
seg-lus
5
seg-lus novel
4
novel ultrasound
4
segmentation
4
ultrasound segmentation
4
segmentation method
4

Similar Publications

Jaundice is an indication of hyperbilirubinemia and is caused by derangements in bilirubin metabolism. It is typically apparent when serum bilirubin levels exceed 3 mg/dL and can indicate serious underlying disease of the liver or biliary tract. A comprehensive medical history, review of systems, and physical examination are essential for differentiating potential causes such as alcoholic liver disease, biliary strictures, choledocholithiasis, drug-induced liver injury, hemolysis, or hepatitis.

View Article and Find Full Text PDF

Objective: This study aimed to introduce and evaluate a novel software-based system, BioTrace, designed for real-time monitoring of thermal ablation tissue damage during image-guided radiofrequency ablation for hepatocellular carcinoma (HCC).

Methods: BioTrace utilizes a proprietary algorithm to analyze the temporo-spatial behavior of thermal gas bubble activity during ablation, as seen in conventional B-mode ultrasound imaging. Its predictive accuracy was assessed by comparing the ablation zones it predicted with those annotated by radiologists using contrast-enhanced computed tomography (CECT) 24 hours post-treatment, considered the gold standard.

View Article and Find Full Text PDF

Nutrient deprivation is a major trigger of autophagy, a conserved quality control and recycling process essential for cellular and tissue homeostasis. In a high-content image-based screen of the human ubiquitome, we here identify the E3 ligase Pellino 3 (PELI3) as a crucial regulator of starvation-induced autophagy. Mechanistically, PELI3 localizes to autophagic membranes, where it interacts with the ATG8 proteins through an LC3-interacting region (LIR).

View Article and Find Full Text PDF

Background: Post-transplant lymphoproliferative disease (PTLD) is a significant complication that can arise following solid organ transplantation or hematopoietic stem cell transplantation. It encompasses a spectrum of lymphoproliferative lesions, ranging from benign reactive hyperplasia to malignant tumors, and is among the most severe complications following liver transplantation in children. It is essential for clinicians to gain a comprehensive understanding of the prevention, clinical manifestations, early diagnosis, and treatment strategies for PTLD in order to reduce mortality rates.

View Article and Find Full Text PDF

Antibody and cell-based therapeutics targeting cell surface receptors have emerged as a major class of immune therapeutics for treating cancer. However, the number of cell surface targets for cancer immunotherapy remains limited. Glypican-3 (GPC3) is a cell surface proteoglycan and an oncofetal antigen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!