Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In broiler chickens, fractures of wings and legs are recorded at poultry slaughterhouses based on the time of occurrence. Prekilling (PRE) fractures occur before the death of animal, so the chicken was still able to experience pain and distress associated with the injury (an animal welfare issue). Postkilling (POST) fractures occur when the chickens are deceased and fully bled-out and consequently unable to feel pain (not an animal welfare issue). Current practice dictates that fractures are recognized visually and recorded by the animal welfare officers as mandated by European Union and/or national regulations. However, new potential monitoring solutions are desired since human inspection suffers from some significant limitations including subjectivism and fatigue. One possible solution in detecting injuries is X-ray computed tomography (CT) scanning and in this study we aim to evaluate the potential of CT scanning and visual inspection in detecting limb fractures and their causes. Eighty-three chicken wings and 60 chicken legs (n = 143) were collected from a single slaughterhouse and classified by an animal welfare officer as PRE, POST or healthy (HEAL). Samples were photographed and CT scanned at a veterinary hospital. The interpretation of CT scans along with photographs took place in 3 rounds (1. CT scans only, 2. CT scans + photographs, 3. photographs only) and was performed independently by 3 veterinarians. The consistency of the interpretation in 3 rounds was compared with the animal welfare officer's classification. Furthermore, selected samples were also analyzed by histopathological examination due to questionability of their classification (PRE/POST). In questionable samples, presence of hemorrhages was confirmed, thus they fit better as PRE. The highest consistency between raters was obtained in the 2nd round, indicating that interpretation accuracy was the highest when CT scans were combined with photographs. These results indicate that CT scanning in combination with visual inspection can be used in detecting limbs fracture and potentially applied as a tool to monitor animal welfare in poultry slaughterhouses in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10844867 | PMC |
http://dx.doi.org/10.1016/j.psj.2023.103403 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!