Adsorption characteristics and mechanisms of water-soluble polymers (PVP and PEG) on kaolin and montmorillonite minerals.

J Hazard Mater

Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Section of Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands; University of Chinese Academy of Sciences, Beijing, China. Electronic address:

Published: March 2024

The excessive use and accumulation of water-soluble polymers (WSPs, known as "liquid plastics") in the environment can pose potential risks to both ecosystems and human health, but the environmental fate of WSPs remains unclear. Here, the adsorption behavior of WSPs with different molecular weight on kaolinite (Kaol) and montmorillonite (Mt) were examined. The results showed that the adsorption of PEG and PVP on minerals were controlled by hydrogen bond and van der Waals force. The Fourier transform infrared (FTIR) spectra and two-dimensional correlation spectroscopy (2D-COS) analysis revealed that there were interactions between the Al-O and Si-O groups of the minerals and the polar O- or N-containing functional groups as well as the alkyl groups of PEG and PVP. The adsorption characteristics of WSPs were closely related to their molecular weight and the pore size of minerals. Due to the relatively large mesopore size of Kaol, both PEG and PVP were absorbed into inner spaces, for which the adsorption capacity increased with molecular weight of the polymers. For Mt, all types of PEG could enter its micropores, while PVP with larger molecular weights appeared to be confined externally, leading to a decrease in the adsorption capacity of PVP with increasing molecular weight. The findings of this study provide a theoretical basis for scientific evaluation of environmental processes of WSPs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.133592DOI Listing

Publication Analysis

Top Keywords

molecular weight
16
peg pvp
12
adsorption characteristics
8
water-soluble polymers
8
adsorption capacity
8
adsorption
6
pvp
6
peg
5
wsps
5
molecular
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!