Two novel chiral molecules, (4S)-5,5-dimethyl-2-(4-oxo-4H-chromen-3-yl)thiazolidine-4-carboxylic acid (OCCA) and (4S)-5,5-dimethyl-2-(4-(1,2,2-triphenylvinyl)phenyl)thiazolidine-4-carboxylic acid (TPCA), were successfully synthesized by aldehyde amine condensation reaction, and their structures were characterized by H NMR and single crystal X-ray diffraction. The intensities of photoluminescence changed with the aggregation, exhibiting that OCCA and TPCA are aggregation-induced emission luminogens (AIEgens). After complete aggregation, OCCA emitted the purple-blue light at the peak of 388 nm and TPCA emitted the cyan light at the peak of 488 nm. The aggregation-induced emission (AIE) effects for OCCA and TPCA resulted from local state to twisted intermolecular charge transfer (TICT) and restriction of intramolecular motion (RIM), respectively. Other spectra including UV-vis, IR, and Raman spectra were also discussed in detail.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2024.123960 | DOI Listing |
Molecules
January 2025
Independent Researcher, 1802 Stanford Avenue, Duluth, MN 55811, USA.
The development of chirality descriptors for quantitative chirality structure-activity relationship (QCSAR) modeling has always attracted attention, owing to the importance of chiral molecules in pharmaceutical, agriculture, food, and fragrance industries, and environmental toxicology. The utility of a multidimensional space of novel relative chirality indices (RCIs) in the QCSAR modeling of twenty CCR2 antagonists is reported upon in this paper. The numerical characterization of chirality by the RCI approach gives a large pool of chirality descriptors with different degrees of mutual correlation (the correlation coefficient among the computed descriptors varied from 0.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nanjing University, School of Chemistry and Chemical Engineering, 163 Xianlin Avenu, 210023, Nanjing, CHINA.
Glycans, unlike uniformly charged DNA and compositionally diverse peptides, are typically uncharged and exhibit rich stereoisomeric diversity in the glycosidic bonds between two monosaccharide units. This heterogeneity of charge and the structural complexity present significant challenges for accurate analysis. Herein, we developed a novel single-molecule oligosaccharide sensor, OmpF nanopore.
View Article and Find Full Text PDFChem Sci
January 2025
School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 PR China
Noncovalent forces have a significant impact on photophysical properties, and the flexible employment of weak forces facilitates the design of novel luminescent materials with a variety of applications. The arene-perfluoroarene (AP) force, as one type of π-hole/π interaction, shows unique directionality, involving an electron-deficient π-hole interacting with a π-electron-rich region, facilitating precise orientation and stabilization in supramolecular structures. Here we present an amination engineering protocol to build a perfluoroarene library based on an octafluoronaphthalene skeleton with various steric and electronic properties.
View Article and Find Full Text PDFChirality
February 2025
Faculty of Chemistry, 'Alexandru Ioan Cuza' University of Iasi, Iasi, Romania.
Chirality plays a crucial role in the pharmacological activity of triazoles, a key scaffold in antifungal agents and various therapeutic applications. This study focuses on optimizing the enantiomeric resolution of chiral triazoles using supercritical fluid chromatography (SFC) and 10 different columns, either immobilized or coated, chlorinated or nonchlorinated, cellulose or amylose-based chiral stationary phases (CSPs). Four novel triazoles and two marketed ones (tebuconazole and hexaconazole) were separated to determine optimal resolution conditions.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
ConspectusChiral organosilicon compounds bearing a Si-stereogenic center have attracted increasing attention in various scientific communities and appear to be a topic of high current relevance in modern organic chemistry, given their versatile utility as chiral building blocks, chiral reagents, chiral auxiliaries, and chiral catalysts. Historically, access to these non-natural Si-stereogenic silanes mainly relies on resolution, whereas their asymmetric synthetic methods dramatically lagged compared to their carbon counterparts. Over the past two decades, transition-metal-catalyzed desymmetrization of prochiral organosilanes has emerged as an effective tool for the synthesis of enantioenriched Si-stereogenic silanes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!