This article proposes predefined-time adaptive neural network (PTANN) and event-triggered PTANN (ET-PTANN) models to efficiently compute the time-varying tensor Moore-Penrose (MP) inverse. The PTANN model incorporates a novel adaptive parameter and activation function, enabling it to achieve strongly predefined-time convergence. Unlike traditional time-varying parameters that increase over time, the adaptive parameter is proportional to the error norm, thereby better allocating computational resources and improving efficiency. To further enhance efficiency, the ET-PTANN model combines an event trigger with the evolution formula, resulting in the adjustment of step size and reduction of computation frequency compared to the PTANN model. By conducting mathematical derivations, the article derives the upper bound of convergence time for the proposed neural network models and determines the minimum execution interval for the event trigger. A simulation example demonstrates that the PTANN and ET-PTANN models outperform other related neural network models in terms of computational efficiency and convergence rate. Finally, the practicality of the PTANN and ET-PTANN models is demonstrated through their application for mobile sound source localization.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2024.3354936DOI Listing

Publication Analysis

Top Keywords

neural network
12
ptann et-ptann
12
et-ptann models
12
predefined-time adaptive
8
adaptive neural
8
time-varying tensor
8
tensor moore-penrose
8
moore-penrose inverse
8
ptann model
8
adaptive parameter
8

Similar Publications

Predicting drug combination side effects based on a metapath-based heterogeneous graph neural network.

BMC Bioinformatics

January 2025

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China.

In recent years, combined drug screening has played a very important role in modern drug discovery. Generally, synergistic drug combinations are crucial in treatment for many diseases. However, the toxic side effects of drug combinations are probably increased with the increase of drugs numbers, so the accurate prediction of toxic side effects of drug combinations is equally important.

View Article and Find Full Text PDF

The facial gestalt (overall facial morphology) is a characteristic clinical feature in many genetic disorders that is often essential for suspecting and establishing a specific diagnosis. Therefore, publishing images of individuals affected by pathogenic variants in disease-associated genes has been an important part of scientific communication. Furthermore, medical imaging data is also crucial for teaching and training deep-learning models such as GestaltMatcher.

View Article and Find Full Text PDF

Alzheimer's Disease (AD) significantly aggravates human dignity and quality of life. While newly approved amyloid immunotherapy has been reported, effective AD drugs remain to be identified. Here, we propose a novel AI-driven drug-repurposing method, DeepDrug, to identify a lead combination of approved drugs to treat AD patients.

View Article and Find Full Text PDF

Construction and application of optimized model for mine water inflow prediction based on neural network and ARIMA model.

Sci Rep

January 2025

Key Laboratory of Karst Georesources and Environment, College of Resources and Environmental Engineering, Guizhou University, Ministry of Education, Guizhou University, Guiyang, 550025, China.

Mine water influx is a significant geological hazard during mine development, influenced by various factors such as geological conditions, hydrology, climate, and mining techniques. This phenomenon is characterized by non-linearity and high complexity, leading to frequent water accidents in coal mines. These accidents not only impact coal production quality but also jeopardize the safety of mine staff.

View Article and Find Full Text PDF

The performance of nanofluids is largely determined by their thermophysical properties. Optimizing these properties can significantly enhance nanofluid performance. This study introduces a hybrid strategy based on computational intelligence to determine the optimal conditions for ternary hybrid nanofluids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!