Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
For the first time, the two factors (the number of sites in the transition state and the nature of the catalytically active species) that affect the energy barriers ( and Δ) in atmospheric aldehyde reactions are proposed. The contribution of each factor to the energy barriers of the ammonization and amination stages, dehydration, and intramolecular hydrogen transfer is studied using the example of the acetaldehyde and glyoxal interactions with ammonia in aqueous solution. A regular decrease in energy barriers is observed in a series of 4-, 6-, and 8-membered transition states (TSs) regardless of the nature of the catalytically active species and their numbers. The 8-membered TSs of ammonization, amination, and dehydration reactions are the most efficient catalytic systems. The role of the nature of catalytically active species is secondary and is expressed in different cases through the influence of entropy and different acidity/basicity of catalytically active species and their structures. The regularities for the stage of intramolecular hydrogen transfer stand out from those for the ammonization, amination, and dehydration stages. The intramolecular hydrogen transfer is organized by three atoms in TSs without the participation of catalytically active species, while the 5- and 7-membered TSs are formed with the participation of such species. A proportional decrease in energy barrier with a sequential increase in the number of TS sites (3-, 5-, and 7-) is not observed. A sharp decrease in the barriers occurs only during the formation of the 7-membered TSs, while the 5-membered structures lie above the 3-membered catalytically inactive structures on the potential energy surface (PES) regardless of the nature of the species forming these structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cp04500e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!