Bone and dental tissues are richly innervated by sensory and sympathetic neurons. However, the characterization of the morphology, molecular phenotype, and distribution of nerves that innervate hard tissue has so far mostly been limited to thin histological sections. This approach does not adequately capture dispersed neuronal projections due to the loss of important structural information during three-dimensional (3D) reconstruction. In this study, we modified the immunolabeling-enabled imaging of solvent-cleared organs (iDISCO/iDISCO+) clearing protocol to image high-resolution neuronal structures in whole femurs and mandibles collected from perfused C57Bl/6 mice. Axons and their nerve terminal endings were immunolabeled with antibodies directed against protein gene product 9.5 (pan-neuronal marker), calcitonin gene-related peptide (peptidergic nociceptor marker), or tyrosine hydroxylase (sympathetic neuron marker). Volume imaging was performed using light sheet fluorescence microscopy. We report high-quality immunolabeling of the axons and nerve terminal endings for both sensory and sympathetic neurons that innervate the mouse femur and mandible. Importantly, we are able to follow their projections through full 3D volumes, highlight how extensive their distribution is, and show regional differences in innervation patterns for different parts of each bone (and surrounding tissues). Mapping the distribution of sensory and sympathetic axons, and their nerve terminal endings, in different bony compartments may be important in further elucidating their roles in health and disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10952626 | PMC |
http://dx.doi.org/10.1002/cne.25582 | DOI Listing |
Cureus
December 2024
Neurosurgery, Fluminense Federal University, Niterói, BRA.
Complex regional pain syndrome (CRPS) is a chronic pain condition characterized by significant sensory, motor, and autonomic dysfunction, often following trauma or nerve injury. Historically known as causalgia and reflex sympathetic dystrophy, CRPS manifests as severe, disproportionate pain, often accompanied by hyperalgesia, allodynia, trophic changes, and motor impairments. Classified into type I (without nerve injury) and type II (associated with nerve damage), CRPS exhibits a complex pathophysiology involving peripheral and central sensitization, neurogenic inflammation, maladaptive brain plasticity, and potential autoimmune and psychological influences.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China.
Background: The colon and rectum are highly innervated, with neural components within the tumor microenvironment playing a significant role in colorectal cancer (CRC) progression. While perineural invasion (PNI) is associated with poor prognosis in CRC, the impact of nerve density and diameter on tumor behavior remains unclear. This study aims to evaluate the prognostic value of nerve characteristics in CRC and to verify the impact of nerves on tumor growth.
View Article and Find Full Text PDFBr J Anaesth
January 2025
Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. Electronic address:
Background: Chronic neuropathic pain generally has a poor response to treatment with conventional drugs. Sympathectomy can alleviate neuropathic pain in some patients, suggesting that abnormal sympathetic-somatosensory signaling interactions might underlie some forms of neuropathic pain. The molecular mechanisms underlying sympathetic-somatosensory interactions in neuropathic pain remain obscure.
View Article and Find Full Text PDFCureus
December 2024
Department of Anaesthesiology, Dr. D. Y. Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND.
Introduction Spinal anesthesia, a commonly used technique for lower abdominal, pelvic, and lower extremity surgeries, involves injecting a local anesthetic into the subarachnoid space to temporarily block sensory, motor, and sympathetic nerves. Despite its high success rate, the failure of spinal anesthesia, which can lead to adverse patient outcomes, remains a concern. The failure rate varies widely, from 1% to 17%, influenced by factors such as technical challenges, patient anatomy, and practitioner experience.
View Article and Find Full Text PDFRenewed scientific interest in sympathetic modulation of muscle and neuromuscular junctions has spurred a flurry of new discoveries with major implications for motor diseases. However, the role sympathetic axons play in the persistent dysfunction that occurs after nerve injuries remains to be explored. Peripheral nerve injuries are common and lead to motor, sensory, and autonomic deficits that result in lifelong disabilities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!