A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fitness benefits of a synonymous substitution in an ancient EF-Tu gene depend on the genetic background. | LitMetric

Synonymous mutations are changes to DNA sequence, which occur within translated genes but which do not affect the protein sequence. Although often referred to as silent mutations, evidence suggests that synonymous mutations can affect gene expression, mRNA stability, and even translation efficiency. A collection of both experimental and bioinformatic data has shown that synonymous mutations can impact cell phenotype, yet less is known about the molecular mechanisms and potential of beneficial or adaptive effects of such changes within evolved populations. Here, we report a beneficial synonymous mutation acquired via experimental evolution in an essential gene variant encoding the translation elongation factor protein EF-Tu. We demonstrate that this particular synonymous mutation increases EF-Tu mRNA and protein levels as well as global polysome abundance on RNA transcripts. Although presence of the synonymous mutation is clearly causative of such changes, we also demonstrate that fitness benefits are highly contingent on other potentiating mutations present within the genetic background in which the mutation arose. Our results underscore the importance of beneficial synonymous mutations, especially those that affect levels of proteins that are key for cellular processes.IMPORTANCEThis study explores the degree to which synonymous mutations in essential genes can influence adaptation in bacteria. An experimental system whereby an strain harboring an engineered translation protein elongation factor-Tu (EF-Tu) was subjected to laboratory evolution. We find that a synonymous mutation acquired on the gene encoding for EF-Tu is conditionally beneficial for bacterial fitness. Our findings provide insight into the importance of the genetic background when a synonymous substitution is favored by natural selection and how such changes have the potential to impact evolution when critical cellular processes are involved.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10882980PMC
http://dx.doi.org/10.1128/jb.00329-23DOI Listing

Publication Analysis

Top Keywords

synonymous mutations
20
synonymous mutation
16
genetic background
12
synonymous
11
fitness benefits
8
synonymous substitution
8
background synonymous
8
mutations affect
8
beneficial synonymous
8
mutation acquired
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!