Background: During the 2019 severe influenza season, New South Wales (NSW) experienced the highest number of cases in Australia. This study retrospectively investigated the genetic characteristics of influenza viruses circulating in NSW in 2019 and identified genetic markers related to antiviral resistance and potential virulence.
Methods: The complete genomes of influenza A and B viruses were amplified using reverse transcription-polymerase chain reaction (PCR) and sequenced with an Illumina MiSeq platform.
Results: When comparing the sequencing data with the vaccine strains and reference sequences, the phylogenetic analysis revealed that most NSW A/H3N2 viruses (n = 68; 94%) belonged to 3C.2a1b and a minority (n = 4; 6%) belonged to 3C.3a. These viruses all diverged from the vaccine strain A/Switzerland/8060/2017. All A/H1N1pdm09 viruses (n = 20) showed genetic dissimilarity from vaccine strain A/Michigan/45/2015, with subclades 6B.1A.5 and 6B.1A.2 identified. All B/Victoria-lineage viruses (n = 21) aligned with clade V1A.3, presenting triple amino acid deletions at positions 162-164 in the hemagglutinin protein, significantly diverging from the vaccine strain B/Colorado/06/2017. Multiple amino acid substitutions were also found in the internal proteins of influenza viruses, some of which have been previously reported in hospitalized influenza patients in Thailand. Notably, the oseltamivir-resistant marker H275Y was present in one immunocompromised patient infected with A/H1N1pdm09 and the resistance-related mutation I222V was detected in another A/H3N2-infected patient.
Conclusions: Considering antigenic drift and the constant evolution of circulating A and B strains, we believe continuous monitoring of influenza viruses in NSW via the high-throughput sequencing approach provides timely and pivotal information for both public health surveillance and clinical treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10824601 | PMC |
http://dx.doi.org/10.1111/irv.13252 | DOI Listing |
Aquaculture is one of the world's fastest-growing sectors in food production but with multiple challenges related to animal handling and infections. The disease caused by infectious salmon anemia virus (ISAV) leads to outbreaks of local epidemics, reducing animal welfare, and causing significant economic losses. The composition of feed has shifted from marine ingredients such as fish oil and fish meal towards a more plant-based diet causing reduced levels of eicosapentaenoic acid (EPA).
View Article and Find Full Text PDFArch Virol
January 2025
National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.
Migratory water birds are considered to be carriers of high pathogenicity avian influenza viruses (HPAIVs). In Japan, mallards are often observed during winter, and HPAIV-infected mallards often shed viruses asymptomatically. In this study, we focused on mallards as potential carriers of HPAIVs and investigated whether individual wild mallards are repeatedly infected with HPAIVs and act as HPAIV carriers multiple times within a season.
View Article and Find Full Text PDFEur Respir Rev
January 2025
Transplant Immunology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid Spain
Background: The morbidity and mortality associated with influenza viruses are a significant public health challenge. Annual vaccination against circulating influenza strains reduces hospitalisations and increases survival rates but requires a yearly redesign of vaccines against prevalent subtypes. The complex genetics of influenza viruses with high antigenic drift create an ongoing challenge in vaccine development to address dynamic influenza epidemiology.
View Article and Find Full Text PDFInfluenza Other Respir Viruses
January 2025
Netherlands Institute for Health Services Research (Nivel), Utrecht, The Netherlands.
Background: Vaccination is a key measure in influenza control, yet global coverage rates remain low, although previous research reported an increase in influenza vaccination coverage rates (VCR) after the onset of the COVID-19 pandemic. This study aims to assess whether these changes were sustained over time by analyzing VCR trends from 2012 to 2023 in the countries included in the FluCov project.
Methods: Data on influenza VCR from 2012 to 2023 for different age and risk groups were extracted from national health organizations and international sources for countries included in the FluCov project.
We compared virus replication and host responses in human alveolar epithelium infected with highly pathogenic avian influenza (HPAI) A(H5N1) viruses. A/Vietnam/1203/2004 replicated most efficiently, followed by A/Texas/37/2024, then A/bovine/Ohio/B24OSU-342/2024. Induction of interferon-stimulated genes was lower with A/Texas/37/2024 and A/bovine/Ohio/B24OSU-342/2024, which may indicate a reduced disease severity of those viruses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!