Lipid storage in the form of triacylglycerol (TAG) is essential for insect life, as it enables flight, development, and reproduction. The activity of the lipase brummer (bmm) has been shown to be essential to insects' homeostasis. The objective of this study was to evaluate how bmm expression occurs in Aedes aegypti larvae and adults, and to observe TAG levels during fasting in adult females. The bmm sequence was identified in A. aegypti and exhibited a patatin-like phospholipase domain reinforced by the presence of a catalytic dyad with serine and aspartate residues, revealing a high degree of similarity with other organisms. Bmm expression was differentiated in the larvae and adult fat body (FB) following TAG reserve dynamics. Bmm was expressed three times in larval stages L3, L4, and pupae compared with L1 and L2, which could indicate its role in the maturation of these insects. In the postemergence (PE) and post-blood meal (PBM) FB of adult insects, bmm expression varied over several days. PE adults showed a pronounced bmm increase from the third day onward compared with those not subjected to fasting. This was accompanied by a decrease in TAG from the third day onward, suggesting the participation of bmm. Six hours after blood feeding, TAG levels increased in mosquitos reared in the absence of sucrose, suggesting lipid accumulation to guarantee reproduction. Bmm responded positively to fasting, followed by TAG mobilization in adult FB. During the previtellogenic period, bmm levels responded to low TAG levels, unlike the PBM period.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/arch.22084 | DOI Listing |
Mol Biol Rep
December 2024
Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box 15468-15514, Tehran, Iran.
Background: The progression of leukemia is substantially associated with the interactions of leukemic cells with surrounding cells within the bone marrow microenvironment (BMM), and these interactions were facilitated using exosomes as vital mediators. The current study aimed to examine the proliferative effects of exosomes derived from the HL-60 cell line, a representative of acute myeloblastic leukemia (AML), on the cell cycle progression of human bone marrow mesenchymal stromal cells (hBM-MSCs), a key element of the BMM.
Methods And Results: hBM-MSCs were treated with different concentrations of AML-derived exosomes from the HL-60 cell line.
HGG Adv
January 2025
GeneDx, LLC, Gaithersburg, MD, USA.
MGA (OMIM: 616061) encodes a dual-specificity transcription factor that regulates the expression of Max-network and T-box family target genes, important in embryogenesis. Previous studies have linked MGA to various phenotypes, including neurodevelopmental disorders, congenital heart disease, and early-onset Parkinson's disease. Here, we describe the clinical phenotype of individuals with de novo, heterozygous predicted loss-of-function variants in MGA, suggesting a unique disorder involving both neurodevelopmental and congenital anomalies.
View Article and Find Full Text PDFCommun Biol
November 2024
University Hospital Jena, Department of Dermatology, Friedrich Schiller University Jena, Jena, Germany.
J Biol Chem
November 2024
Department of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development; Duke University Medical Center, Durham, North Carolina, USA; Departments of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA; Department of Immunobiology; Duke University Medical Center, Durham, North Carolina, USA; Geriatric Research, Education, and Clinical Center, Durham VA Health Care System, Durham, North Carolina, USA. Electronic address:
Curr Res Transl Med
September 2024
Department of Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!