BACKGROUND Ischemia/reperfusion injury (IRI) is an inherent problem in organ transplantation, owing to the obligate period of ischemia that organs must endure. Cyclosporine A (CsA), though better know as an immunosuppressant, has been shown to mitigate warm IRI in a variety of organ types, including the liver. However, there is little evidence for CsA in preventing hepatic IRI in the transplant setting. MATERIAL AND METHODS In the present study, we tested the effect of CsA on hepatic IRI in a large-animal ex vivo model of donation after circulatory death (DCD). Porcine donors were pre-treated with either normal saline control or 20 mg/kg of CsA. Animals were subject to either 45 or 60 minutes of warm ischemia before hepatectomy, followed by 2 or 4 hours of cold storage prior to reperfusion on an ex vivo circuit. Over the course of a 12-hour perfusion, perfusion parameters were recorded and perfusate samples and biopsies were taken at regular intervals. RESULTS Peak perfusate lactate dehydrogenase was significantly decreased in the lower-ischemia group treated with CsA compared to the untreated group (4220 U/L [3515-5815] vs 11 305 [10 100-11 674]; P=0.023). However, no difference was seen between controls and CsA-treated groups on other parameters in perfusate alanine or asparagine aminotransferase (P=0.912, 0.455, respectively). Correspondingly, we found no difference on midpoint histological injury score (P=0.271). CONCLUSIONS We found minimal evidence that CsA is protective against hepatic IRI in our DCD model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10838008PMC
http://dx.doi.org/10.12659/AOT.941054DOI Listing

Publication Analysis

Top Keywords

hepatic iri
12
ischemia/reperfusion injury
8
model donation
8
donation circulatory
8
circulatory death
8
evidence csa
8
csa
6
iri
5
cyclosporine mitigate
4
mitigate liver
4

Similar Publications

This study aimed to investigate the protective effects of vitamin B complex and alpha-lipoic acid (ALA) pre-treatments on hepatic ischemia-reperfusion injury (IRI) in rats, focusing on their potential to enhance antioxidant defense mechanisms and reduce post-ischemic liver damage. Thirty male Wistar albino rats were divided into four groups: sham group (n = 10), IRI group (n = 10), vitamin B group (n = 10), vitamin B + ALA group (n = 10). In the IRI, vitamin B, and vitamin B + ALA groups, the rats underwent 45 min of hepatic ischemia followed by 60 min of reperfusion.

View Article and Find Full Text PDF

Liraglutide and GLP-1(9-37) alleviated hepatic ischemia-reperfusion injury by inhibiting ferroptosis via GSK3β/Nrf2 pathway and SMAD159/Hepcidin/FTH pathway.

Redox Biol

December 2024

Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China. Electronic address:

Ferroptosis plays a pivotal role in the pathogenesis of ischemia-reperfusion injury (IRI). Liraglutide, as a GLP-1 receptor (GLP-1R) agonist, has exhibited extensive biological effects beyond its hypoglycemic action. Recent studies have shed light on the regulatory influence of Liraglutide on ferroptosis, yet the precise underlying mechanism remains elusive.

View Article and Find Full Text PDF

The liver plays a crucial role in regulating lipid metabolism. Our study examined the impact of Exosomes derived from adipose mesenchymal stem cells (ADSCs-Exo) on lipid metabolism following liver ischemia-reperfusion injury (IRI) combined with partial hepatectomy. We developed a miniature swine model for a minimally invasive hemi-hepatectomy combined with liver IRI.

View Article and Find Full Text PDF

Ischemia-reperfusion injury (IRI) is the leading cause of hepatic graft dysfunction, resulting from hepatocyte damage. Nevertheless, given the few specialized therapeutics available in hepatic IRI, additional mechanistic insights into hepatocyte damage are required. Here, the protein solute carrier family 39 member 14 (SLC39A14) is identified as a pro-ferroptosis target in hepatocytes of human liver allografts through single-cell RNA sequencing analysis.

View Article and Find Full Text PDF

Hepatic Ischemia-Reperfusion Injury (HIRI) is an unavoidable pathological process during liver surgeries such as liver transplantation and hepatic resection, which involves a complex set of molecular and cellular mechanisms. The mechanisms of HIRI may involve a variety of biological processes in which inflammation and apoptosis play a central role. Therefore, it is crucial to deeply investigate the effects of different hypoxia and reoxygenation times on the construction of an in vitro model of hepatic ischemia-reperfusion injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!