Integrated BSA-seq and RNA-seq analysis to identify candidate genes associated with nitrogen utilization efficiency (NUtE) in rapeseed (Brassica napus L.).

Int J Biol Macromol

College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China. Electronic address:

Published: January 2024

Rapeseed (Brassica napus L.) is one of the important oil crops, with a high demand for nitrogen (N). It is essential to explore the potential of rapeseed to improve nitrogen utilization efficiency (NUtE). Rapeseed is an allotetraploid crop with a relatively large and complex genome, and there are few studies on the mapping of genes related to NUtE regulation. In this study, we used the combination of bulk segregant analysis sequencing (BSA-Seq) and RNA sequencing (RNA-Seq) to analyze the N-efficient genotype 'Zheyou 18' and N-inefficient genotype 'Sollux', to identify the genetic regulatory mechanisms. Several candidate genes were screened, such as the high-affinity nitrate transporter gene NRT2.1 (BnaC08g43370D) and the abscisic acid (ABA) signal transduction-related genes (BnaC02g14540D, BnaA03g20760D, and BnaA05g01330D). BnaA05g01330D was annotated as ABA-INDUCIBLE bHLH-TYPE TRANSCRIPTION FACTOR (AIB/bHLH17), which was highly expressed in the root. The results showed that the primary root length of the ataib mutant was significantly longer than that of the wild type under low N conditions. Overexpression of BnaA5.AIB could reduce the NUtE under low N levels in Arabidopsis (Arabidopsis thaliana). Candidate genes identified in this study may be involved in the regulation of NUtE in rapeseed, and new functions of AIB in orchestrating N uptake and utilization have been revealed. It is indicated that BnaA5.AIB may be the key factor that links ABA to N signaling and a negative regulator of NUtE. It will provide a theoretical basis and application prospect for resource conservation, environmental protection, and sustainable agricultural development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.127771DOI Listing

Publication Analysis

Top Keywords

candidate genes
12
nute rapeseed
12
nitrogen utilization
8
utilization efficiency
8
efficiency nute
8
rapeseed brassica
8
brassica napus
8
nute
6
genes
5
rapeseed
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!