Background: Diabetic foot ulcer (DFU) is one of the most common and severe complications of diabetes, with vascular changes, neuropathy, and infections being the primary pathological mechanisms. Glutamine (Gln) metabolism has been found to play a crucial role in diabetes complications. This study aims to identify and validate potential Gln metabolism biomarkers associated with DFU through bioinformatics and machine learning analysis.

Methods: We downloaded two microarray datasets related to DFU patients from the Gene Expression Omnibus (GEO) database, namely GSE134431, GSE68183, and GSE80178. From the GSE134431 dataset, we obtained differentially expressed Gln-metabolism related genes (deGlnMRGs) between DFU and normal controls. We analyzed the correlation between deGlnMRGs and immune cell infiltration status. We also explored the relationship between GlnMRGs molecular clusters and immune cell infiltration status. Notably, WGCNA to identify differentially expressed genes (DEGs) within specific clusters. Additionally, we conducted GSVA to annotate enriched genes. Subsequently, we constructed and screened the best machine learning model. Finally, we validated the predictions' accuracy using a nomogram, calibration curves, decision curve analysis (DCA), and the GSE134431, GSE68183, and GSE80178 dataset.

Results: In both the DFU and normal control groups, we confirmed the presence of deGlnMRGs and an activated immune response. From the GSE134431 dataset, we obtained 20 deGlnMRGs, including CTPS1, NAGS, SLC7A11, GGT1, GCLM, RIMKLA, ARG2, ASL, ASNS, ASNSD1, PPAT, GLS2, GLUD1, MECP2, ASS1, PRODH, CTPS2, ALDH5A1, DGLUCY, and SLC25A12. Furthermore, two clusters were identified in DFU. Immune infiltration analysis indicated the presence of immune heterogeneity in these two clusters. Additionally, we established a Support Vector Machine (SVM) model based on 5 genes (R3HCC1, ZNF562, MFN1, DRAM1, and PTGDS), which exhibited excellent performance on the external validation datasetGSE134431, GSE68183, and GSE80178 (AUC = 0.929).

Conclusion: This study has identified five Gln metabolism genes associated with DFU, revealing potential novel biomarkers and therapeutic targets for DFU. Additionally, the infiltration of immune-inflammatory cells plays a crucial role in the progression of DFU.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10826017PMC
http://dx.doi.org/10.1186/s12864-024-10038-2DOI Listing

Publication Analysis

Top Keywords

gln metabolism
12
gse68183 gse80178
12
dfu
9
diabetic foot
8
foot ulcer
8
immune infiltration
8
crucial role
8
associated dfu
8
machine learning
8
gse134431 gse68183
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!