Conventional Wilkinson power dividers (WPDs) perform satisfactorily near the intended operation frequency. Nonetheless, these WPDs demonstrate subpar performance in the stopband and necessitate a significant physical space. To enhance the existing level of advancement and in order to improve on the current state-of-the-art, a modified WPD is designed and fabricated, demonstrating a significant improvement in stopband and superior isolation between output ports. To improve the stopband and suppress unwanted harmonics, a low-pass filter (LPF) structure is placed in the both branches of the conventional WPD. The proposed modified WPD depicts a wide stopband bandwidth (f > 17.25 GHz) from 2.75 to over 20 GHz with an attenuation level of 20 dB, suppressing 2nd to 11th harmonics. According to measured results, the input return loss (|S|), insertion loss (|S|) and output isolation (|S|) at f = 1.8 GHz are better than 33 dB, 3.2 dB and 21 dB, respectively. Indeed, the proposed modified WPD exhibits a magnitude imbalance of 0.00018, a phase imbalance of 1.25 degrees and a group delay of 0.5 ns. The proposed WPD depicts a compact size of 35 mm × 25 mm (0.38 λg × 0.27 λg), where λg is the guided wavelength at f = 1.8 GHz. There is a good agreement between the simulated and measured results. According to the obtained results, the proposed modified WPD shows a desirable performance for modern LTE and GSM communication applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10825212 | PMC |
http://dx.doi.org/10.1038/s41598-024-52506-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!