Graphene's exceptional electronic and mechanical properties make it a promising material for bioelectronic applications; however, understanding its interaction with electrogenic bacteria is crucial to harness its full potential. This study investigates the interface between electrogenic bacteria and graphene with Raman spectroscopy by analyzing the distinctive spectral fingerprints to understand electron energy and distribution via this non-destructive and label-free method. We find that the presence of bacteria induces a distinct red-shift in the G peak positions of graphene, indicating electron doping. Correspondingly, the bacteria demonstrate a predilection for attachment on hole-rich sites on the graphene sheet, evidenced by the comparative analysis of pre- and post-spatial Raman mapping, revealing their consistent presence within the hole-doped 2D peak position range of 2673.89-2675.43 cm. This affinity of bacteria is due to the overall higher Fermi level (∼4.9 ± 0.2 eV) of these regions, which favors electron transfer. These findings demonstrate the potential of leveraging the graphene's electronic properties in engineering graphene-based biosensors. Tuning graphene's charge carrier concentration would enable the promotion or prevention of bacterial attachment, facilitating capture of specific bacteria or development of antimicrobial surfaces. This approach enables clean, efficient, and accurate study of graphene-based bacterial systems, driving significant advancements and enhancing their performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c16263 | DOI Listing |
Front Microbiol
January 2025
School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom.
Microbial Fuel Cells (MFCs) are innovative environmental engineering systems that harness the metabolic activities of microbial communities to convert chemical energy in waste into electrical energy. However, MFC performance optimization remains challenging due to limited understanding of microbial metabolic mechanisms, particularly with complex substrates under realistic environmental conditions. This study investigated the effects of substrate complexity (acetate vs.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA.
Electroactive organisms contribute to metal cycling, pollutant removal, and other redox-driven environmental processes via extracellular electron transfer (EET). Unfortunately, developing genotype-phenotype relationships for electroactive organisms is challenging because EET is necessarily removed from the cell of origin. Microdroplet emulsions, which encapsulate individual cells in aqueous droplets, have been used to study a variety of extracellular phenotypes but have not been applied to investigate EET.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio n.42, 40126 Bologna, Italy.
Disaccharide trehalose has been proven in many cases to be particularly effective in preserving the functional and structural integrity of biological macromolecules. In this work, we studied its effect on the electron transfer reactions that occur in the chromatophores of the photosynthetic bacterium . In the presence of a high concentration of trehalose, following the activation of the photochemistry by flashes of light, a slowdown of the electrogenic reactions related to the activity of the photosynthetic reaction center and cytochtome (cyt) complexes is observable.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
A biofuel cell is an electrochemical device using exoelectrogen or biocatalysts to transfer electrons from redox reactions to the electrodes. While wild-type microbes and natural enzymes are often employed as exoelectrogen and biocatalysts, genetically engineered or modified organisms have been developed to enhance exoelectrogen activity. Here, we demonstrated a redox-enzyme integrated microbial fuel cell (REI-MFC) design based on an exoelectrogen-enhancing strategy that reinforces the electrogenic activity of MR1 by displaying an extra redox enzyme on the cell surface.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal. Electronic address:
The bacterium Geotalea uraniireducens, commonly found in uranium-contaminated environments, plays a key role in bioremediation strategies by converting the soluble hexavalent form of uranium (U(VI)) into less soluble forms (e.g., U(IV)).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!