The co-pelletization of microalgae with filamentous fungi was a promising approach for microalgae harvest. However, the real conditions of microalgae growth limited the arbitrary optimization of co-pellets formation with filamentous fungi. Therefore, it is urgent to develop an approach to manipulate the co-pelletization through treatment of A. niger spores. In this study, Aspergillus niger and Chlorella vulgaris were used as the model species of filamentous fungi and microalgae to investigate co-pellets formation using A. niger spores after by different pH solutions treatment, swelling, snailase treatment. The importance of spore treatments on C. vulgaris harvest in sequence was claimed based on response surface methodology analysis. The pH solutions treatment, swelling, snailase treatment of A. niger spore contributed 21.0%, 10.5%, 40.7% of harvest ratio of C. vulgaris respectively, which guided the application of spore treatment into co-pelletization. Treatment of spore was showed as an efficient approach to manipulate co-pelletization for microalgae harvest in diverse microalgae condition. This results promoted the application of co-pelletization technology in microalgae harvest of various conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11274-023-03878-9 | DOI Listing |
Virulence
December 2025
Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
Sulfur metabolism is an essential aspect of fungal physiology and pathogenicity. Fungal sulfur metabolism comprises anabolic and catabolic routes that are not well conserved in mammals, therefore is considered a promising source of prospective novel antifungal targets. To gain insight into sulfur-related metabolism during infection, we used a NanoString custom nCounter-TagSet and compared the expression of 68 key metabolic genes in different murine models of invasive pulmonary aspergillosis, at 3 time-points, and under a variety of conditions.
View Article and Find Full Text PDFAm J Bot
January 2025
Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA.
Premise: The ability of plants to adapt or acclimate to climate change is inherently linked to their interactions with symbiotic microbes, notably fungi. However, it is unclear whether fungal symbionts from different climates have different impacts on the outcome of plant-fungal interactions, especially under environmental stress.
Methods: We tested three provenances of fungal inoculum (originating from dry, moderate or wet environments) with one host plant genotype exposed to three soil moisture regimes (low, moderate and high).
Glob Chang Biol
January 2025
Department of Renewable Resources, University of Alberta, Edmonton, Canada.
Soil microorganisms transform plant-derived C (carbon) into particulate organic C (POC) and mineral-associated C (MAOC) pools. While microbial carbon use efficiency (CUE) is widely recognized in current biogeochemical models as a key predictor of soil organic carbon (SOC) storage, large-scale empirical evidence is limited. In this study, we proposed and experimentally tested two predictors of POC and MAOC pool formation: microbial necromass (using amino sugars as a proxy) and CUE (by O-HO approach).
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Soil Science, University of Tehran, Tehran, Iran.
Soil compaction is a pressing issue in agriculture that significantly hinders plant growth and soil health, necessitating effective strategies for mitigation. This study examined the effects of sugarcane bagasse, both in its raw form and as biochar, along with biological activators (Bacillus simplex UTT1 and Phanerochaete chrysosporium) on soil characteristics and corn (Zea mays L.) plant biomass in a compacted soil.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China.
Barley leaf stripe, a disease mainly caused by Pyrenophora graminea (P. graminea) infection, severely affects barley yield and quality and is one of the most widespread diseases in barley production. However, little is known about the underlying molecular mechanisms of leaf stripe resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!