The comprehensive and efficient characterization of components in traditional Chinese medicine is crucial for elucidating its active constituents and uncovering its mechanism. Identifying the compounds of the Bushen Huoxue Prescription (BHP) is difficult because of its complex composition and the large difference in concentration among its compounds. In this study, a hydrophilic interaction liquid chromatography coupled with reversed-phase LC (HILIC × RPLC) offline 2D-LC tandem high-resolution mass spectrometry method was established to analyze the total compounds of the BHP. Database screening and molecular networking were performed to identify the compounds. In contrast to conventional 1D chromatography, 2D chromatography increased peak capacity, enriched trace ingredients, and prevented the masking of high-abundance compounds. A total of 165 compounds were identified, and 14 potential compounds needed to be further identified. This study provided an effective method for comprehensively analyzing the complex system of traditional Chinese medicine compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jssc.202300624 | DOI Listing |
J Clin Invest
January 2025
Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, United States of America.
Radiotherapy can be limited by pneumonitis which is impacted by innate immunity, including pathways regulated by TRAIL death receptor DR5. We investigated whether DR5 agonists could rescue mice from toxic effects of radiation and found two different agonists, parenteral PEGylated trimeric-TRAIL (TLY012) and oral TRAIL-Inducing Compound (TIC10/ONC201) could reduce pneumonitis, alveolar-wall thickness, and oxygen desaturation. Lung protection extended to late effects of radiation including less fibrosis at 22-weeks in TLY012-rescued survivors versus un-rescued surviving irradiated-mice.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Air pollution is a leading contributor to the global disease burden. However, the complex nature of the chemicals to which humans are exposed through inhalation has obscured the identification of the key compounds responsible for diseases. Here, we develop a network topology-based framework to identify key toxic compounds in the airborne chemical exposome.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
Inadvertent exposure to aristolochic acids (AAs) is causing chronic renal disease worldwide, with aristolochic acid I (AA-I) identified as the primary toxic agent. This study employed chemical methods to investigate the mechanisms underlying the nephrotoxicity and carcinogenicity of AA-I. Aristolochic acid II (AA-II), which has a structure similar to that of AA-I, was investigated with the same methods for comparison.
View Article and Find Full Text PDFAnimal Model Exp Med
January 2025
Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1207, Bangladesh.
The increasing incidence of neurodegenerative diseases (NDs) and the constraints of existing treatment methods have spurred a keen interest in investigating alternative therapies. Medicinal plants, renowned for their long-standing use in traditional medicine, offer a hopeful avenue for discovering new neuroprotective agents. This study emphasizes the potential neuroprotective characteristics of edible fruit plants in Bangladesh, specifically focusing on their traditional folk medicine uses for neurological disorders.
View Article and Find Full Text PDFCurr Nutr Rep
January 2025
Research and Development cell, Department of Intellectual property Rights, Lovely Professional University, Jalandhar- Delhi Grand Trunk Rd., Phagwara, Punjab, 144411, India.
Purpose Of Review: This review explores the mechanistic pathways and clinical implications of phytochemicals in obesity management, addressing the global health crisis of obesity and the pressing need for effective, natural strategies to combat this epidemic.
Recent Findings: Phytochemicals demonstrate significant potential in obesity control through various molecular mechanisms. These include the modulation of adipogenesis, regulation of lipid metabolism, enhancement of energy expenditure, and suppression of appetite.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!