Synthesis and investigation of novel boron- and magnesium-doped YAG:Ce and LuAG:Ce phosphor ceramics.

Luminescence

Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Vilnius, Lithuania.

Published: January 2024

YAG:Ce and LuAG:Ce ceramics are widely used as scintillator materials that convert high-energy radiation into visible light. For the practical application of such compounds, short decay times are a necessity. One way of shortening the existing decay times even more is to change the local environment of emitting ions by means of doping the matrix with additional elements, for example, boron or magnesium. Furthermore, boron ions also can help absorb gamma rays more efficiently, therefore improving overall applicability. Due to the aforementioned reasons, YAG and LuAG ceramics doped with cerium, boron, and magnesium were synthesized. Initial amorphous powders have been obtained by means of sol-gel synthesis and pressed into pellets under isostatic pressure and finally calcinated to form crystalline ceramics. The effects of boron and magnesium doping on the morphological, structural, and luminescence properties were investigated. The key results showed that doping with boron has indeed shortened the decay times of the garnet pellets. Overall, boron doping of ceramics is a relatively new research area; however, it is rather promising as it helps both to improve the luminescence properties and to increase particle growth rate.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bio.4673DOI Listing

Publication Analysis

Top Keywords

decay times
12
boron magnesium
12
yagce luagce
8
luminescence properties
8
boron
6
ceramics
5
synthesis investigation
4
investigation novel
4
novel boron-
4
boron- magnesium-doped
4

Similar Publications

Plasmon Dynamics in Nanoclusters: Dephasing Revealed by Excited States Evaluation.

J Chem Theory Comput

January 2025

Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States.

The photocatalytic efficiency of materials such as graphene and noble metal nanoclusters depends on their plasmon lifetimes. Plasmon dephasing and decay in these materials is thought to occur on ultrafast time scales, ranging from a few femtoseconds to hundreds of femtoseconds and longer. Here we focus on understanding the dephasing and decay pathways of excited states in small lithium and silver clusters and in plasmonic states of the π-conjugated molecule anthracene, providing insights that are crucial for interpreting optical properties and photophysics.

View Article and Find Full Text PDF

Background/purpose: Dysbiosis of oral microbiota has been reported in late stage of chronic hepatitis B (CHB) infection with cirrhosis. CHB is characterized by the constant virus-induced liver injury which may lead to liver cirrhosis and hepatocellular carcinoma (HCC). However, some patients show normal liver function without antiviral treatment, associating with favourable prognosis.

View Article and Find Full Text PDF

κ/β-GaO Type-II Phase Heterojunction.

Adv Mater

January 2025

Advanced Semiconductor Laboratory, Electrical and Computer Engineering Program, Division of Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.

Ultrawide-bandgap gallium oxide (GaO) holds immense potential for crucial applications such as solar-blind photonics and high-power electronics. Although several GaO polymorphs, i.e.

View Article and Find Full Text PDF

Background: Most patients with prostate cancer inevitably progress to castration-resistant prostate cancer (CRPC), at which stage chemotherapeutics like docetaxel become the first-line treatment. However, chemotherapy resistance typically develops after an initial period of therapeutic efficacy. Increasing evidence indicates that cancer stem cells confer chemotherapy resistance via exosomes.

View Article and Find Full Text PDF

Nuclear accident-derived I in several river water, eastern Fukushima, Japan, 2016-2020.

J Environ Radioact

January 2025

Institute of Nature and Environmental Technology, Kanazawa University, Kakuma, 920-1192, Kanazawa, Ishikawa, Japan.

Radionuclides, including I, were released into the atmosphere by the Fukushima nuclear power plant accident. We measured the dissolved I concentration in 11 rivers in eastern Fukushima from 2016 to 2020 to clarify the I concentration level in river water under base-flow conditions. During the study period, the maximum I concentration in the river water was 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!