Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pectin, predominantly present within plant cell walls, is a dietary fiber that potentially induces distinct health effects depending on its molecular structure. Such structure-dependent health effects of pectin-derived galacturonic acid oligosaccharides (GalA-OS) are yet largely unknown. This study describes the influence of methyl-esterification and ∆4,5-unsaturation of GalA-OS through defined sets of GalA-OS made from pectin using defined pectinases, on the fermentability by individual fecal inocula. The metabolite production, OS utilization, quantity and size, methyl-esterification and saturation of remaining GalA-OS were monitored during the fermentation of GalA-OS. Fermentation of all GalA-OS predominantly induced the production of acetate, butyrate and propionate. Metabolization of unsaturated GalA-OS (uGalA-OS) significantly increased butyrate formation compared to saturated GalA-OS (satGalA-OS), while satGalA-OS significantly increased propionate formation. Absence of methyl-esters within GalA-OS improved substrate metabolization during the first 18 h of fermentation (99 %) compared to their esterified analogues (51 %). Furthermore, HPAEC and HILIC-LC-MS revealed accumulation of specific methyl-esterified GalA-OS, confirming that methyl-esterification delays fermentation. Fermentation of structurally distinct GalA-OS results in donor specific microbiota composition with uGalA-OS specifically stimulating the butyrate-producer Clostridium Butyricum. This study concludes that GalA-OS fermentation induces highly structure-dependent changes in the gut microbiota, further expanding their potential use as prebiotics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2024.121789 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!