Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Developing high-performance microwave absorption (MA) materials becomes an urgent concern in the field of electromagnetic protection. Constructing porous framework is an efficient approach to MA owing to the abilities of adjusting impedance matching and providing more reflection and scattering paths for electromagnetic waves. Herein, a cellulose nanofibril (CNF)/honeycomb-like carbon-shell encapsulated FeCoNi@C/carbon nanotube (CNT) composite aerogel was fabricated via a facile freeze-drying method. The super-lightweight composites showed a distinctive gradient structure for reflection and scattering inside aerogel pores, micrometer small pores, and nano-fillers on the pore walls. The composite aerogel showed an ideal minimum reflection loss (RL) of -43.6 dB and remarkable adjustable effective absorption bandwidth (EAB) of 12.18 GHz due to good impedance matching, unique gradient porous structure, and synergies of multiple loss mechanisms. Therefore, this work will provide a viable strategy to improve the MA capability of absorbers by taking full advantage of constructing gradient reflection and scattering porous structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2024.121777 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!