A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bioinspired pullulan-starch nanoplatelets nanocomposite films with enhanced mechanical properties. | LitMetric

Inspired by the leaf-vein network structure, the pullulan-starch nanoplatelets (SNPs) bioinspired films with enhanced strength and toughness were successfully fabricated through a water evaporation-induced self-assembly technique. SNPs (SNP200 and SNP600) of two sizes were separated by differential centrifugation. Interactions between SNPs and pullulan during drying resulted in the vein-like network structure in both nanocomposite films when the appropriate amounts of SNP200 or SNP600 were added to pullulan, respectively. The TS and toughness values of pullulan with 1 % w/w SNP200 films reached up to 51.05 MPa and 69.65 MJ·m, which were 86 % and 223 % higher than those of the neat pullulan films, respectively. Moreover, the TS and toughness values of pullulan-SNP200 were significantly higher than those of pullulan-SNP600 films, when SNP content exceeded the 1 % w/w level. By applying a graph theory, the network structures were found to correlate with the mechanical properties of the pullulan-SNPs bioinspired films. The new strategy for designing starch nanoplatelets-based edible films that combine mechanical strength and toughness holds promises for the development of novel biobased composite materials for food packaging application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2023.121769DOI Listing

Publication Analysis

Top Keywords

pullulan-starch nanoplatelets
8
films
8
nanocomposite films
8
films enhanced
8
mechanical properties
8
network structure
8
bioinspired films
8
strength toughness
8
snp200 snp600
8
toughness values
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!