A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Facile exfoliation and physicochemical characterization of Thespesia populnea plant leaves based bioplasticizer macromolecules reinforced with polylactic acid biofilms for packaging applications. | LitMetric

Facile exfoliation and physicochemical characterization of Thespesia populnea plant leaves based bioplasticizer macromolecules reinforced with polylactic acid biofilms for packaging applications.

Int J Biol Macromol

Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand. Electronic address:

Published: March 2024

AI Article Synopsis

  • Plasticizers, which are usually synthetic and toxic, can be sourced from eco-friendly plant resources like the leaves of Thespesia populnea to enhance the workability of polymers for biofilm applications.
  • The research involves a complex extraction process and comprehensive characterization techniques to analyze the extracted plasticizer's properties, including its crystallinity and thermal stability.
  • The addition of this natural plasticizer improves the mechanical properties and thermal stability of polylactic acid films, but excessive plasticizer content can reduce tensile strength.

Article Abstract

Plasticizers are active ingredients added to the polymer to increase its workability. Since synthetic plasticizer is not ecofriendly and toxic in nature, it is a real cause for concern. On this basis, our study focuses on plasticizer extraction from plant-based resources. In this research work, Thespesia populnea leaves are utilized for the isolation of biological macromolecules with a plasticizing effect for biofilm applications. This extraction process is done through solvent extraction, amination, slow pyrolysis, and surface catalysis process. The physico-chemical and microstructural characterization of novel plasticizer particles were studied for the first time. The lower crystallinity index and crystalline size obtained from X-ray diffraction is 50.08 % and 20.45 nm respectively. Energy dispersive spectroscopy, particle sizer analysis, atomic force microscopy, and scanning electron microscopy are used to assess surface morphology of this plasticizer. The thermogram and differential thermal analysis curves give the information about degradation behavior of plasticizers and their thermal stability. The glass transition temperature of the extracted plasticizer is 60.56 °C. The plasticizing effect of the plasticizer is studied through film fabrication of polylactic acid which was blended with the extracted plasticizer. The mechanical property of biofilm was improved with the addition of plasticizer. The elongation break percentage (for 5 % plasticizer 46.12 %) was increased compared to others with moderate tensile strength. However, the tensile and elongation modulus decreases with the increase of plasticizer content. The crystallinity of the PLA film was improved after the plasticization. The thermal stability also increased with 3 % addition of the plasticizer. The isolated plasticizer was soluble in water and its molecular weight ≈380.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.129771DOI Listing

Publication Analysis

Top Keywords

plasticizer
12
thespesia populnea
8
polylactic acid
8
thermal stability
8
extracted plasticizer
8
addition plasticizer
8
facile exfoliation
4
exfoliation physicochemical
4
physicochemical characterization
4
characterization thespesia
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: